In recent years, quasi-one-dimensional materials have attracted a lot of research attention due to their remarkable properties, and their potential as building blocks for nanoscale electronic and optoelectronic devices. A modified chemical vapor deposition (CVD) method has been used to synthesize ZnO nanowires. Electron microscopy and other characterization techniques show that nanowires having distinct morphologies when grown under different conditions. The effects of reaction parameters including reaction time, temperature, carrier gas flow rate, substrates and catalyst material upon the size, shape, and density of ZnO nanowire arrays have been investigated. Excitonic solar cells —including Gratzel-type cells, organic and hybrid organic/inorganic solar cells—are promising devices for inexpensive, large-scale solar energy conversion. Hybrid organic/inorganic solar cells are made from composites of conjugated polymers with nanostructure metal oxides, in which the polymer component serves the function of both light absorber and hole conductor, and the ZnO nanowire arrays act as the electron conductors. Organic solar cells have been fabricated from environmentally friendly water-soluble polymers and ZnO nanowire arrays.
Identifer | oai:union.ndltd.org:vcu.edu/oai:scholarscompass.vcu.edu:etd-2855 |
Date | 30 June 2009 |
Creators | Yu, Dongshan |
Publisher | VCU Scholars Compass |
Source Sets | Virginia Commonwealth University |
Detected Language | English |
Type | text |
Format | application/pdf |
Source | Theses and Dissertations |
Rights | © The Author |
Page generated in 0.0019 seconds