New and innovative materials are needed to develop more effective batteries. Nanoscale materials such as graphite have unique properties only seen in the nano-regime that allow them to be used in the production of lithium-ion batteries. For example, because of its ability to conduct electricity, nano-scale graphite has been used in the anode of lithium-ion batteries, which has revolutionized the long-term use of medical devices, such as pacemakers and defibrillators. Interestingly, the graphite anode has a relatively low specific capacity per gram of ~372 mAh g-1, which limits the rate of charge available to these devices. The specific capacity of silicon, however, is ~11 times greater than that of graphite at ~4200 mAh g-1, which makes it a better choice as an anode material. Silicon is not presently used because of its fragility during the lithiation process. In this work, we demonstrate a robust nanoscale material synthesis inspired by the biomineralization process that the ocean-dwelling unicellular phytoplankton, diatoms, that they use to form their porous silicon structure. By maintaining the porous structure of diatoms from the conversion of silica to silicon, using a magnesiothermic reduction process, their structure can be used to enhance siliconĂ¢s strength during the lithiation process allowing the use of siliconĂ¢s higher specific capacity. This approach has the potential to implement silicon as an anode for lithium-ion batteries to enhance the longevity of present day applications.
Identifer | oai:union.ndltd.org:VANDERBILT/oai:VANDERBILTETD:etd-03152016-124830 |
Date | 22 March 2016 |
Creators | Wright, Nicholas Aigner |
Contributors | David Edward Cliffel, David Wilson Wright |
Publisher | VANDERBILT |
Source Sets | Vanderbilt University Theses |
Language | English |
Detected Language | English |
Type | text |
Format | application/pdf |
Source | http://etd.library.vanderbilt.edu/available/etd-03152016-124830/ |
Rights | restrictsix, I hereby certify that, if appropriate, I have obtained and attached hereto a written permission statement from the owner(s) of each third party copyrighted matter to be included in my thesis, dissertation, or project report, allowing distribution as specified below. I certify that the version I submitted is the same as that approved by my advisory committee. I hereby grant to Vanderbilt University or its agents the non-exclusive license to archive and make accessible, under the conditions specified below, my thesis, dissertation, or project report in whole or in part in all forms of media, now or hereafter known. I retain all other ownership rights to the copyright of the thesis, dissertation or project report. I also retain the right to use in future works (such as articles or books) all or part of this thesis, dissertation, or project report. |
Page generated in 0.0022 seconds