Return to search

Chirped-pulse millimeter-wave spectroscopy, dynamics, and manipulation of Rydberg-Rydberg Transitions

Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Chemistry, 2013. / This electronic version was submitted by the student author. The certified thesis is available in the Institute Archives and Special Collections. / Cataloged from student-submitted PDF version of thesis. / Includes bibliographical references (p. 131-138). / The chirped-pulse millimeter-wave (CPmmW) technique is applied to transitions between Rydberg states, and calcium atoms are used as the initial test system. The unique feature of Rydberg{Rydberg transitions is that they have enormous electric dipole transition moments: ~5 kiloDebye at n* ~45, where n* is the eective principal quantum number. After polarization by a mm-wave pulse in the 70{84 GHz frequency region, the excited transitions re-radiate free induction decay (FID) at their resonant frequencies, and the FID is heterodyne-detected by the CPmmW spectrometer. Data collection and averaging are performed in the time domain. The spectral resolution is ~100 kHz. Because of the large transition dipole moments, the available mm-wave power is sucient to polarize the entire bandwidth of the spectrometer (12 GHz) in each pulse, and high-resolution survey spectra may be collected. Both absorptive and emissive transitions are observed, and they are distinguished by the phase of their FID relative to that of the excitation pulse. With the combination of the large transition dipole moments and direct monitoring of transitions, dynamics are observed, such as transient nutations from the interference of the excitation pulse with the polarization that it induces in the sample. Transient nutations also provide information about the sample, such as the dipole moment and the number density of Rydberg states. Since the waveform produced by the mm-wave source may be precisely controlled, states with high angular momentum may be populated by a sequence of pulses while recording the results of these manipulations in the time domain. Also, the superradiant decay of the Rydberg sample is probed both directly through FID and indirectly using photon echoes. Prospects for further manipulations, such as adiabatic rapid passage, composite pulses, and optical/mm-wave stimulated Raman adiabatic passage, are evaluated. The application of the CPmmW technique to transitions between Rydberg states of molecules is discussed. / by Anthony P. Colombo. / Ph.D.

Identiferoai:union.ndltd.org:MIT/oai:dspace.mit.edu:1721.1/82169
Date January 2013
CreatorsColombo, Anthony P. (Anthony Paul)
ContributorsRobert W. Field., Massachusetts Institute of Technology. Department of Chemistry., Massachusetts Institute of Technology. Department of Chemistry.
PublisherMassachusetts Institute of Technology
Source SetsM.I.T. Theses and Dissertation
LanguageEnglish
Detected LanguageEnglish
TypeThesis
Format138 p., application/pdf
RightsM.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission., http://dspace.mit.edu/handle/1721.1/7582

Page generated in 0.0015 seconds