Return to search

Chiroptical Spectroscopic Studies on Surfactants, Other Aggregating Systems, and Natural Products

Recent experimental studies have shown unexpected chiroptical response from some chiral surfactant molecules. In these cases, the magnitude of the specific optical rotation was seen to change as a function of surfactant concentration, which is considered to be due to molecular aggregation and contrary to that known for typical organic molecules. To explain these experimental results on the +10,000 atom surfactant systems, non-traditional methods are necessary. To that end, a large number of molecular dynamics simulations, quantum mechanical calculations, and extensive analysis have been performed on a model system, the lauryl ester of phenylalanine. Monomer-dimer equilibrium, representing the simplest form of aggregation, and its influence on the Horeau effect, have also been investigated using pantolactone and 2-hydroxy-3-pinanone as test cases. Also a novel chiroptical spectral analysis method utilizing the Dissymmetry Factor (DF) spectrum has been developed. Studies ranging from rigid to flexible molecules have demonstrated the advantages of the DF method, especially when several diastereomers are involved. Using the DF spectrum as an additional means of analysis, the previously undetermined absolute configurations of four natural products have been determined.

Identiferoai:union.ndltd.org:VANDERBILT/oai:VANDERBILTETD:etd-03282016-102309
Date01 April 2016
CreatorsCovington, Cody Lance
ContributorsPrasad Polavarapu, Timothy Hanusa, Terry Lybrand, Janet Macdonald, Kalman Varga
PublisherVANDERBILT
Source SetsVanderbilt University Theses
LanguageEnglish
Detected LanguageEnglish
Typetext
Formatapplication/pdf
Sourcehttp://etd.library.vanderbilt.edu/available/etd-03282016-102309/
Rightsunrestricted, I hereby certify that, if appropriate, I have obtained and attached hereto a written permission statement from the owner(s) of each third party copyrighted matter to be included in my thesis, dissertation, or project report, allowing distribution as specified below. I certify that the version I submitted is the same as that approved by my advisory committee. I hereby grant to Vanderbilt University or its agents the non-exclusive license to archive and make accessible, under the conditions specified below, my thesis, dissertation, or project report in whole or in part in all forms of media, now or hereafter known. I retain all other ownership rights to the copyright of the thesis, dissertation or project report. I also retain the right to use in future works (such as articles or books) all or part of this thesis, dissertation, or project report.

Page generated in 0.0019 seconds