Dans ce travail, plusieurs applications des films minces à base de silice mésoporeuse fonctionnalisée, générés par auto-assemblage électrochimiquement-assisté (EASA), organisés et orientés, ont été développées. Au préalable, avant de se concentrer sur les films fonctionnalisés proprement dits, nous avons caractérisé les propriétés de perméabilité de tels films vis-à-vis de sondes redox en solution différemment chargées (neutre, Fc(MeOH)2, positive, Ru(NH3)63+, négatives, Fe(CN)63-/4-), démontrant une limitation électrostatique pour les anions. Ceci nous a amené à étudier l'amplification de la réponse électrochimique des sondes électroactives anioniques (Fe(CN)63-/4-) en présence d’un film de silice chargé négativement sur la surface de l’électrode en ayant recours à des médiateurs neutres ou chargés positivement. La fonctionnalisation de ces films minces de silice a été effectuée en combinant la méthode EASA pour obtenir un film de silice fonctionnalisé par de groupements azoture avec une réaction de couplage avec un groupe alcyne (l’éthynyl-ferrocène dans ce cas). La réponse électrochimique obtenue pour ces films isolants fonctionnalisés par des groupes ferrocene électroactifs est due à un mécanisme de saut d’électrons entre les sites électroactifs adjacents. L'oxydation électrochimique du ferrocène en ion ferricinium génère des charges positives qui sont compensées par l'entrée d'anions permettant une éventuelle détection ampérométrique indirecte d'anions non électroactifs. L’injection d’anions non-électroactifs dans une cellule électrochimique constituée par une électrode de travail fonctionnalisée par ces films de silice porteurs de groupements ferrocène, soumise à l’imposition d’un potentiel positif (+0,5 V), a donné lieu à une réponse ampérométrique proportionnelle à la concentration d'anions. La régénération de l’électrode par réduction du ferricinium était nécessaire afin d’éviter la diminution du signal électrochimique dû à la consommation progressive du ferrocène par des multiples analyses successives. Cette régénération a été réalisée in situ par une méthode ampérométrique à onde carrée. Le films mésoporeux orientés peuvent également être fonctionnalisés par des complexes à base de ruthénium du type [Ru(bpy)2(bpy')]2+ en adaptant la méthode décrite auparavant. Le succès de la fonctionnalisation est vérifié par électrochimie et aussi par spectroscopie UV-Vis au travers de la bande MLCT caractéristique du complexe immobilisé. Une étude plus approfondie est effectuée lors du transfert de charge (saut d'électrons le long des sites adjacents) et le transport de masse de l’anion compensateur de charge au travers des canaux mésoporeux en faisant varier la vitesse de balayage en potentiel. Les propriétés de luminescence de ces films ont été étudiées en présence et en absence d’oxygène, évaluant la possibilité d'utiliser ce type de film pour des applications telles que l'électrochimiluminescence ou la détection d’oxygène. Finalement, ces films à base silice orientés ont été utilisés pour la croissance de nanofilaments de polyaniline (PANI). Ces nanofilaments de polyaniline ordonnée sont générés par voie électrochimique de manière contrôlée. Etant donnée la taille des mésopores (2 nm de diamètre), des chaînes PANI quasi-uniques sont vraisemblablement produites. À partir d'expériences de chronoampérométrie, sur base de films de différentes épaisseurs (100-200 nm), il est possible de prouver l’existence de plusieurs étapes d'électropolymérisation. Chaque étape de la formation du polymère (période d'induction, croissance de la polyaniline au sein et en dehors des canaux mésoporeux) est clairement identifiée. La génération de nanofilaments de polyaniline isolés est démontrée par l'amélioration de la réversibilité entre les états conducteurs et non-conducteurs de la polyaniline. La possibilité de contrôler et d'adapter la croissance des nanofilaments polymères conducteurs offre de nombreuses possibilités [...] / In this work, we exploited the vertically-aligned mesoporous silica thin films generated by electro-assisted self-assembly (EASA). First of all, we present a study about the amplification of charge transfer of a repulsed anionic redox probes [i.e. Fe(CN)63-/4-] through the negatively charged silica film by using neutrally or positively charged redox probes [Fc(MeOH)2 or Ru(NH3)63+ respectively] through redox mediating processes. Furthermore, the functionalization can be conducted by combining EASA method to obtain azide-functionalized silica film and further letting it react with an ethynyl-bearing reactant (e.g. ethynyl-ferrocene) according Huisgen click chemistry. The resulting ferrocene-functionalized silica films are electroactive, involving an electron hopping mechanism between adjacent ferrocene moieties. The electrochemical oxidation of ferrocene into ferricinium ion generates positive charges that are compensated by the ingress of anions into the film, opening the door to possible indirect amperometric detection of non-electroactive anions by flow injection analysis. Operating in an electrolyte-free flow, each injection of an anion (e.g., NO3-) at an electrode biased at a suitable positive potential (i.e., +0.5 V) gave rise to an amperometric response proportional to the anion concentration. However, to avoid the decrease of the electrochemical signal due to the progressive consumption of ferrocene in multiple successive analyses, it was necessary to regenerate the electrode by reduction of ferricinium moieties, which can be achieved in-situ by square wave amperometry. The feasibility to apply such indirect amperometric detection scheme in suppressed ion chromatography (for detecting anions in mixture) was also demonstrated. The oriented mesoporous film can also be functionalized with ruthenium(II)bipyridyl complex [Ru(bpy)2(bpy’)]2+ using the same method. Optimization of the functionalization level is controlled electrochemically by cyclic voltammetry (CV) and monitored through the UV-vis spectra. Further study is conducted upon the charge transfer (electron hopping along the adjacent sites) and the mass transfer of the compensating counter anion through the mesochannels by varying the CV potential scan rate. The emission of the [Ru(bpy)2(bpy’)]2+-functionalized film and its quenching in the presence of oxygen are evidenced in both aqueous and organic solvent, giving opportunities to apply the film for different application, such as electrochemiluminescence sensor and oxygen detection. Lastly, the vertically-aligned mesoporous silica film is used as a hard template to grow polyanilinine nanofilaments. The growth of ordered polyaniline nanofilaments is controlled by potentiostatic polymerization. In such small pore template (2 nm in diameter), quasi-single PANI chains are likely to be produced. From chronoamperometric experiments and using films of various thicknesses (100−200 nm) it is possible to evidence the electropolymerization transients, wherein each stage of polymerization (induction period, growth, and overgrowth of polyaniline on mesoporous silica films) is clearly identified. The advantageous effect of mesostructured silica thin films as hard templates for the generation of isolated polyaniline nanofilaments is demonstrated from enhancement of the reversibility between the conductive and the nonconductive states of polyaniline and the higher electroactive surface areas displayed for all mesoporous silica/PANI composites. The possibility to control and tailor the growth of conducting polymer nanofilaments offers numerous opportunities for applications in various fields including energy, sensors and biosensors, photovoltaics, nanophotonics, or nanoelectronics
Identifer | oai:union.ndltd.org:theses.fr/2017LORR0218 |
Date | 26 October 2017 |
Creators | Karman, Cheryl |
Contributors | Université de Lorraine, Walcarius, Alain, Vilá, Neus |
Source Sets | Dépôt national des thèses électroniques françaises |
Language | English |
Detected Language | French |
Type | Electronic Thesis or Dissertation, Text |
Page generated in 0.0039 seconds