Return to search

Nectin-1 is Degraded in <em>Chlamydia trachomatis</em>-Infected Genital Epithelial Cells and is Required for Herpes Simplex Virus Co-Infection-Induced <em>C. trachomatis</em> Persistence.

The obligate intracellular bacterium Chlamydia trachomatis is the most common bacterial STD agent in the US. This bacterium has a unique biphasic developmental cycle in which the infectious elementary body (EB) infects a host mucosal epithelial cell and differentiates into the replicative form (the reticulate body or RB) within a modified vacuole called an inclusion. The RB later divides and develops back into an EB and is released, perpetuating the infectious cycle. When developing chlamydiae are exposed to unfavorable environmental conditions, they deviate from the normal developmental cycle into a non-infectious but viable state termed persistence. Previous data from our laboratory indicate that i) during C. trachomatis/HSV co-infection, the chlamydiae become persistent and ii) HSV gD interaction with host cell surface is sufficient to induce this response. During viral entry, HSV gD interacts with one of four host co-receptors, one of which is the host adhesion molecule nectin-1. Interestingly, Western blotting demonstrated that nectin-1 is significantly decreased in C. trachomatis-infected HeLa cells. Additional studies indicated that active C. trachomatis replication is required for nectin-1 down-regulation and nectin-1 is likely down-regulated post-translationally. CPAF, a chlamydia-secreted protease, is responsible for degrading several host proteins. Both in vivo experiments using CPAF-specific chemical inhibitors and cell-free cleavage assays using recombinant CPAF indicate that nectin-1 is degraded by CPAF in C. trachomatis-infected cells. Further studies suggest that nectin-1 is the most likely candidate involved in triggering HSV-induced chlamydial persistence. Co-infection experiments using nectin-1-specific HSV-1 mutants suggest that nectin-1 is, indeed, required for persistence induction. Additional studies in single co-receptor-expressing CHO cells demonstrate that, despite the fact that HSV-1 enters both HVEM- and nectin-1-expressing cells, viral co-infection reduces chlamydial infectivity only in the CHO-nectin-1 cell line. These data confirm that HSV/nectin-1 interaction is sufficient for chlamydial persistence induction. Although nectin-1 ligation is known to activate Cdc42, pull-down assays indicate that Cdc42 is not activated in co-infected HeLa cells. Taken together, these data suggest that: i) HSV gD-nectin-1 binding activates a novel host epithelial cell pathway that restricts chlamydial development and ii) the chlamydiae may degrade nectin-1 to evade this inhibitory host response.

Identiferoai:union.ndltd.org:ETSU/oai:dc.etsu.edu:etd-3147
Date09 May 2009
CreatorsSun, Jingru
PublisherDigital Commons @ East Tennessee State University
Source SetsEast Tennessee State University
Detected LanguageEnglish
Typetext
Formatapplication/pdf
SourceElectronic Theses and Dissertations
RightsCopyright by the authors.

Page generated in 0.0082 seconds