Return to search

Protein Hypercitrullination, a Basic Mechanism of Demyelinating Diseases

Multiple sclerosis (MS) is a complex disease of the human central nervous system (CNS) involving the patchy destruction of the myelin sheath. Previous studies have found a consistent biochemical change in MS normal appearing white matter (NAWM) i.e. the increased citrullination of myelin basic protein (MBP) resulting in decreased myelin compaction. This process is facilitated by the enzyme family of peptidylarginine deiminases (PADs), of which PAD2 and PAD4 are expressed in mouse and human brain white matter. Therefore, we propose the inhibition of PAD enzymes would reverse protein hypercitrullination and represents a potential treatment for MS. Treatment with 2-chloroacetamidine (2CA), an active site inhibitor of PAD, attenuated diseases in four independent mouse models of MS associated with decreased PAD activity level, normalized peptidylcitrullination, and improved myelin morphology. Therefore, protein hypercitrullination may be a basic mechanism implicated in both neurodegenerative and autoimmune models of MS.

Identiferoai:union.ndltd.org:LACETR/oai:collectionscanada.gc.ca:OTU.1807/25755
Date10 January 2011
CreatorsLei, Haolan
ContributorsMoscarello, Mario
Source SetsLibrary and Archives Canada ETDs Repository / Centre d'archives des thèses électroniques de Bibliothèque et Archives Canada
Languageen_ca
Detected LanguageEnglish
TypeThesis

Page generated in 0.002 seconds