The jaw musculature of Champsosaurus has been enigmatic since the taxon was first described. The extant phylogenetic bracketing method is used to determine the morphology of the jaw adductor musculature. Rotational mathematics is used to calculate the muscle forces, torques, angular accelerations, and angular velocities generated by the jaw muscles. The mechanical strength of the skulls of neochoristoderes and crocodilians are investigated using finite element analysis. Finally, the hydrodynamic performance of the skulls of neochoristoderes and crocodilians is studied. The analysis is used to compare neochoristoderes to their extant ecological analogues, crocodilians, and determine the palaeoecological implications of the results. It was found that Champsosaurus rotates the lower jaw faster, the mechanical strength was lower, and shows better hydrodynamic performance than crocodilians. The results suggest that Champsosaurus was ideally suited to prey upon small or juvenile fish, and did not overlap its niche with sympatric crocodilians. / Systematics and Evolution
Identifer | oai:union.ndltd.org:LACETR/oai:collectionscanada.gc.ca:AEU.10048/1334 |
Date | 11 1900 |
Creators | James, Michael |
Contributors | Currie, Philip (Biological Sciences), Caldwell, Michael (Biological Sciences), Fox, Richard (Biological Sciences), Acorn, John (Renewable Resources) |
Source Sets | Library and Archives Canada ETDs Repository / Centre d'archives des thèses électroniques de Bibliothèque et Archives Canada |
Language | en_US |
Detected Language | English |
Type | Thesis |
Format | 4941381 bytes, application/pdf |
Page generated in 0.0101 seconds