Ng, Tsz Wai. / Thesis (M.Phil.)--Chinese University of Hong Kong, 2010. / Includes bibliographical references (leaves 86-98). / Abstracts in English and Chinese. / Acknowledgements --- p.i / Abstract --- p.ii / Table of Contents --- p.vii / List of Figures --- p.xiii / List of Plates --- p.XV / List of Tables --- p.xxi / Abbreviations --- p.xxii / Chapter 1. --- Introduction --- p.1 / Chapter 1.1 --- "Pollution, toxicity and environmental impact of azo dye" --- p.1 / Chapter 1.2 --- Common treatment methods for dyeing effluent --- p.2 / Chapter 1.2.1 --- Physicochemical methods --- p.2 / Chapter 1.2.1.1 --- Coagulation/ flocculation --- p.2 / Chapter 1.2.1.2 --- Adsorption --- p.3 / Chapter 1.2.1.3 --- Membrane filtration --- p.4 / Chapter 1.2.1.4 --- Fenton reaction --- p.4 / Chapter 1.2.1.5 --- Ozonation --- p.5 / Chapter 1.2.1.6 --- Photocatalytic oxidation --- p.6 / Chapter 1.2.2 --- Biological treatments --- p.7 / Chapter 1.2.2.1 --- Degradation of azo dyes by bacteria --- p.8 / Chapter 1.2.2.1.1 --- Anaerobic conditions --- p.8 / Chapter 1.2.2.1.2 --- Aerobic conditions --- p.9 / Chapter 1.2.2.1.3 --- Combined anaerobic and aerobic conditions --- p.10 / Chapter 1.2.2.2 --- Decolourization of azo dyes by fungi --- p.11 / Chapter 1.2.2.3 --- Mechanisms of azo dye reduction by microorganisms --- p.12 / Chapter 1.3 --- "Chromium species, toxicity and their impacts on environment" --- p.14 / Chapter 1.4 --- Common treatment methods for chromium --- p.16 / Chapter 1.4.1 --- Chemical and physical methods --- p.16 / Chapter 1.4.2 --- Biological methods --- p.17 / Chapter 1.4.2.1 --- Chromium reduction by aerobic bacteria --- p.17 / Chapter 1.4.2.2 --- Chromium reduction by anaerobic bacteria --- p.18 / Chapter 1.5 --- Studies concerning azo dye and Cr(VI) co-treatment --- p.19 / Chapter 1.6 --- Response surface methodology --- p.21 / Chapter 1.6.1 --- Response surface methodology against one-factor-at-a-time design --- p.22 / Chapter 1.6.2 --- Phases of response surface methodology --- p.25 / Chapter 1.6.3 --- 2 - level factorial design --- p.26 / Chapter 1.6.4 --- Path of steepest ascent --- p.27 / Chapter 1.6.5 --- Central composite design --- p.28 / Chapter 2. --- Objectives --- p.30 / Chapter 3. --- Materials and Methods --- p.31 / Chapter 3.1 --- Isolation of bacterial strains --- p.31 / Chapter 3.1.2 --- Azo dye decolourization --- p.33 / Chapter 3.1.3 --- Chromate reduction --- p.34 / Chapter 3.2 --- Identification of selected bacterial strains --- p.35 / Chapter 3.2.1 --- Gram stain --- p.35 / Chapter 3.2.2 --- Sherlock® Microbial Identification System --- p.35 / Chapter 3.2.3 --- 16S ribosomal RNA sequencing --- p.37 / Chapter 3.3 --- Optimization of dye decolourization and chromate reduction efficiency with response surface methodology --- p.38 / Chapter 3.3.1 --- Minimal-run resolution V design --- p.38 / Chapter 3.3.2 --- Path of steepest ascent --- p.40 / Chapter 3.3.3 --- Central composite design --- p.41 / Chapter 3.3.4 --- Statistical analysis --- p.43 / Chapter 3.3.5 --- Experimental validation of the optimized conditions --- p.43 / Chapter 3.4 --- Determination of the performance of the selected bacterium in different conditions --- p.43 / Chapter 3.5 --- Determination of azoreductase and chromate reductase activities --- p.44 / Chapter 3.5.1 --- Preparation of cell free extract --- p.44 / Chapter 3.5.2 --- Azoreductase and chromate reductase assay --- p.45 / Chapter 3.6 --- Determination and characterization of degradation intermediates --- p.45 / Chapter 3.6.1 --- Isolation and concentration of the purple colour degradation intermediate --- p.45 / Chapter 3.6.2 --- Mass spectrometry analysis --- p.47 / Chapter 3.6.3 --- Atomic absorption spectrometry analysis --- p.48 / Chapter 4. --- Results --- p.49 / Chapter 4.1 --- Azo dye decolourizing and chromate reducing ability of the isolated bacterial strain --- p.49 / Chapter 4.2 --- Identification of selected bacterium --- p.50 / Chapter 4.3 --- Optimization of dye decolourization and chromate reduction efficiency with response surface methodology --- p.50 / Chapter 4.3.1 --- Minimal-run resolution V design --- p.50 / Chapter 4.3.2 --- Path of the steepest ascend --- p.54 / Chapter 4.3.3 --- Central composite design --- p.55 / Chapter 4.3.4 --- Validation of the predicted model --- p.62 / Chapter 4.4 --- Performance of the selected bacterium in different conditions --- p.62 / Chapter 4.4.1 --- Chromate and dichromate --- p.62 / Chapter 4.4.2 --- Initial pH --- p.63 / Chapter 4.4.3 --- Low and high salt concentration --- p.63 / Chapter 4.4.4 --- Initial K2CrO4 concentration --- p.63 / Chapter 4.4.5 --- Initial Acid Orange 7 concentration --- p.63 / Chapter 4.4.6 --- Nutrients limitation --- p.64 / Chapter 4.5 --- Chromate reductase and azoreductase activities --- p.67 / Chapter 4.6 --- Determination of degradation intermediates --- p.67 / Chapter 4.6.1 --- Mass spectrum of the degradation intermediate --- p.68 / Chapter 4.6.2 --- Chromium content of the degradation intermediate --- p.70 / Chapter 5. --- Discussion --- p.71 / Chapter 5.1 --- Characteristic of Brevibacterium linens --- p.71 / Chapter 5.2 --- Optimization of dye decolourization and chromate reduction with response surface methodology --- p.72 / Chapter 5.3 --- Performance of Brevibacterium linens under different culture conditions --- p.75 / Chapter 5.4 --- Postulation of mechanisms --- p.76 / Chapter 5.4.1 --- Possible reasons of unexpected results of the effect of initial Acid Orange 7 and K2CrO4 concentration --- p.76 / Chapter 5.4.2 --- Properties of the purple colour degradation intermediate --- p.78 / Chapter 5.4.3 --- Mechanisms likely responsible for the chromate reduction --- p.80 / Chapter 5.4.4 --- Explanation of the unexpected results --- p.80 / Chapter 6. --- Conclusions --- p.83 / Chapter 7. --- References --- p.86 / Chapter 8. --- Appendices --- p.99 / Chapter 8.1 --- Definition and calculation of different terms in 2-level factorial design --- p.99 / Chapter 8.2 --- Definition and calculation of different terms in ANOVA table --- p.100 / Chapter 8.3 --- Aliases of terms and resolution --- p.103 / Chapter 8.4 --- Moving of factors in path of steepest ascent --- p.105 / Chapter 8.5 --- Estimation of the parameters in linear regression models --- p.106 / Chapter 8.6 --- Definition and calculation of different terms in test of fitness --- p.109
Identifer | oai:union.ndltd.org:cuhk.edu.hk/oai:cuhk-dr:cuhk_327003 |
Date | January 2010 |
Contributors | Ng, Tsz Wai., Chinese University of Hong Kong Graduate School. Division of Life Sciences. |
Source Sets | The Chinese University of Hong Kong |
Language | English, Chinese |
Detected Language | English |
Type | Text, bibliography |
Format | print, xviii, 112 leaves : ill. (some col.) ; 30 cm. |
Rights | Use of this resource is governed by the terms and conditions of the Creative Commons “Attribution-NonCommercial-NoDerivatives 4.0 International” License (http://creativecommons.org/licenses/by-nc-nd/4.0/) |
Page generated in 0.0026 seconds