Return to search

Variations climatiques et variations du cycle hydrologique aux basses latitudes au cours du Quaternaire : une approche combinant modèle et données / Climate and low latitude water cycle variations during the Quaternary : a model-data approach

Le climat du Quaternaire est défini par une succession de périodes glaciaires et interglaciaires enregistrées dans les archives climatiques à différentes latitudes. La carotte de glace d’EPICA Dome C fournit un enregistrement haute résolution sur les derniers 800 ka du δ18Oatm (i.e. δ18O de la molécule d’oxygène de l’air) qui combine les variations passées du cycle hydrologique des basses latitudes et de la productivité de la biosphère. En l’absence du comptage des couches annuelles, ce proxy peut être utilisé comme méthode de datation orbitale des carottes de glace, en lien avec l’insolation au 21 juin à 65°N. Cependant, un décalage de 6 ka entre le δ18Oatm et l’insolation, généralement observé lors des terminaisons glaciaires-interglaciaires, est appliqué sur l’ensemble de l’enregistrement lors de la construction de l’échelle d’âge. Ce décalage et la complexité du signal du δ18Oatm expliquent l’incertitude élevée de 6 ka des carottes de glace, ce qui limite leur interprétation en termes de variations climatiques et environnementales conjointement à d’autres archives. J’ai donc développé une nouvelle chronologie pour les carottes de glace, basée sur le lien entre le δ18Oatm et le δ18Ocalcite des spéléothèmes est-asiatiques, à partir de nouvelles mesures isotopiques permettant d’avoir pour la première fois un enregistrement complet sur les derniers 800 ka à Dome C. Cette nouvelle chronologie permet de réduire les incertitudes par rapport à la chronologie actuelle et d’avoir une meilleure séquence des évènements entre les hautes et basses latitudes. J’ai ensuite développé un modèle simulant la composition isotopique de l’oxygène atmosphérique afin de répondre au manque d’interprétations quantitatives de ce proxy ainsi que pour vérifier son lien avec le δ18Ocalcite sur plusieurs cycles climatiques. Pour modéliser le δ18Oatm nous avons dû coupler le modèle climatique de complexité intermédiaire iLOVECLIM avec le modèle de végétation CARAIB. Le δ18Oatm simulé par le modèle couplé sur plusieurs dizaines de milliers d’années confirme que ses variations sont en phase avec celles de l’insolation de l’hémisphère Nord (hormis lors d’évènements de Heinrich) et avec celles du δ18Ocalcite via des modifications du cycle hydrologique des basses latitudes, impactant la composition isotopique de l’eau de pluie utilisée par la biosphère terrestre lors de la photosynthèse. / Quaternary glacial-interglacial cycles are recorded in various climatic archives from high to low latitudes. The EPICA Dome C ice core provides a high-resolution record over the last 800 ka of δ18Oatm (i.e. δ18O of atmospheric O2) which combines past variations of the low latitude water cycle and of the biosphere productivity. In absence of annual layer counting, this proxy can be used for orbital dating in association with the June 21st insolation at 65°N to build an ice core chronology. However a lag of 6 ka between the δ18Oatm and the insolation, classically observed during glacial-interglacial terminations, is applied to the entire record during the chronology construction. This lag and the complexity of the δ18Oatm signal are the main reasons why the ice core chronology presents a high 6 ka uncertainty which limits their interpretation, jointly with other paleoclimate archives, in terms of past climate and environmental variations. To solve this issue I have developed a new ice core chronology based on the relation between the δ18Oatm and the δ18Ocalcite of east-asian speleothems, using new isotope measurements allowing for the first time a complete record over the last 800 ka at Dome C. This new chronology reduces the uncertainties compared to the actual ice core chronology strongly based on δ18Oatm and shows a better sequence of events between the high and low latitudes records. Then, I have developed a model to reproduce the isotopic composition of atmospheric O2 to address the lack of quantitative interpretations of this proxy and to check our assumption of synchronicity with the δ18Ocalcite over several climatic cycles. To reproduce the variations of the δ18Oatm, it was necessary to couple the intermediate complexity climate model iLOVECLIM and the vegetation model CARAIB. Finally, the δ18Oatm variations simulated with the new coupled model over several thousand years are in phase with the insolation of the Northern hemisphere (except during Heinrich events) and with low latitudes δ18Ocalcite variations. This can be explained by changes in the low latitude water cycle related to changes in the isotopic composition of meteoric water used by the terrestrial biosphere during photosynthesis.

Identiferoai:union.ndltd.org:theses.fr/2019SACLV056
Date18 October 2019
CreatorsExtier, Thomas
ContributorsUniversité Paris-Saclay (ComUE), Landais, Amaëlle, Roche, Didier
Source SetsDépôt national des thèses électroniques françaises
LanguageFrench
Detected LanguageFrench
TypeElectronic Thesis or Dissertation, Text

Page generated in 0.0021 seconds