Return to search

Estimation haute-résolution de la position de cibles en mouvement à partir du suivi du sous-espace sources et d'un estimateur statistique de 2e ordre

En 1995, la technologie LIDAR fait émergence en télédétection et entraîne avec elle une nouvelle forme de concurrence dans un domaine jusqu'alors dominé par les systèmes RADAR. Contrairement à ces derniers, l'émetteur d'un LIDAR opère à des fréquences au-delà des ondes radios, habituellement dans l'infrarouge, ce qui fait qu'une détection non cohérente doit être employée et que seule l'enveloppe des signaux est récupérée, formant ainsi des signaux réels. Alors que de multiples algorithmes ont été développés au l des années pour faire le traitement des signaux captés par l'antenne-réseau d'un RADAR, aucun n'était reconnu jusqu'à présent comme étant particulièrement performant lorsque utilisé avec des signaux réels. En 2015, dans le cadre d'un projet de recherche visant à améliorer la distance et la précision de la détection des objets à l'aide d'un LIDAR, une adaptation [1] du très populaire algorithme MUSIC développé par Schmidt fut réalisée a n de pouvoir l'utiliser selon le principe du temps de vol plutôt que pour les directions d'arrivée. Cette adaptation ouvrit la voie à l'utilisation d'algorithmes statistiques, à l'origine conçus pour les signaux avec information de phase, pour des signaux réels. Malheureusement, l'application directe de ces algorithmes requiert un temps d'exécution considérable et ce, en particulier lors de la formation, du traitement et de la décomposition propre de la matrice ReXX. Par conséquent, des optimisations doivent être considérées pour être en mesure d'en faire l'implantation dans du matériel à faible coût lorsqu'il est question d'opération en temps réel. Parmi ces optimisations, c'est l'utilisation de méthodes de suivi fondées sur la notion de sous-espace qui fait l'objet de cet ouvrage. Ces algorithmes reposent sur l'idée qu'il est possible d'oublier, de façon graduelle, les données du passé au pro t des nouvelles données sans avoir à passer par la formation de la matrice ReXX à chaque fois. Ainsi, les résultats démontrent qu'une réduction de 25% à 95% du temps d'exécution est possible dans un contexte d'utilisation conjointe, mais moins fréquente, avec une méthode à complexité algorithmique plus élevée. Par ailleurs, les résultats des essais réalisés par [1] ne couvrent que les cibles stationnaires. Par conséquent, ce projet vise à étendre cette étude aux cibles en mouvement. Les résultats obtenus permettent de démontrer l'efficacité des méthodes de suivi du sous-espace pour de tels cas. / In 1995, LIDAR systems emerged as a new alternative to the well-known RADAR systems for remote sensing applications. However, unlike RADAR, the operating frequency of LIDAR systems is above the radio frequencies and usually in the infrared which means that a non-coherent detection has to be used to retrieve the signal's enveloppe. While several signal processing algorithms have been developped for RADAR phased arrays, none of these algorithms are known, to this day, to be e cient when dealing with real, phaseless signals. In 2015, as part of a research project to enhance the detection precision and maximal distance of a LIDAR system, an adaptation [1] of the so-called MUSIC algorithm developped by Schmidt was realised to be used with the time-of- ight principle instead of the direction of arrival principle. Unfortunately, the direct application of the adapted algorithm was time consuming, especially the creation, processing and eigendecomposition stages of the ReXX matrix. As so, optimizations are required to allow its implementation into a low-cost system for real-time purposes. Among those optimizations, the use of subspace tracking methods will be studied in this thesis. Subspace tracking algorithms are based on the idea that instead of having to create ReXX at each data update, one can use the known data while adding the new data with a forgetting factor. The result of these optimizations is that a decrease of 25% to 95% in execution time is observed when subspace tracking is used together with a higher complexity method to initialize its parameters. The study realised by [1] was mostly done for stationary objects. This thesis aims to extend that study to non stationary objects. Results show that using subspace tracking methods is even more efficient in these cases.

Identiferoai:union.ndltd.org:LAVAL/oai:corpus.ulaval.ca:20.500.11794/40299
Date27 November 2020
CreatorsIsabel, Marc-André
ContributorsGrenier, Dominic
Source SetsUniversité Laval
LanguageFrench
Detected LanguageFrench
Typemémoire de maîtrise, COAR1_1::Texte::Thèse::Mémoire de maîtrise
Format1 ressource en ligne (xix, 130 pages), application/pdf
Rightshttp://purl.org/coar/access_right/c_abf2

Page generated in 0.0025 seconds