Return to search

Threshold Implementations of the Present Cipher

"The process of securing data has always been a challenge since it is related to the safety of people and society. Nowadays, there are many cryptographic algorithms developed to solve security problems. However, some applications have constraints which make it difficult to achieve high levels of security. Light weight cryptography aims to address this issue while trying to maintain low costs. Side-channel attacks have changed the way of cryptography significantly. In this kind of attacks, the attacker has physical access to the crypto-system and can extract the sensitive data by monitoring and measuring the side-channels such as power consumption, electromagnetic emanation, timing information, sound, etc. These attacks are based on the relationship between side-channels and secret data. Therefore, there need to be countermeasures to eliminate or reduce side channel leaks or to break the relationship between side-channels and secret data to protect the crypto systems against side-channel attacks. In this work, we explore the practicality of Threshold Implementation (TI) with only two shares for a smaller design that needs less randomness but is still leakage resistant. We demonstrate the first two-share Threshold Implementations of light-weight block cipher Present. Based on implementation results, two-share TI has a lower area overhead and better throughput when compared with a first-order resistant three-share scheme. Leakage analysis of the developed implementations reveals that two-share TI can retain perfect first-order resistance. However, the analysis also exposes a strong second-order leakage. "

Identiferoai:union.ndltd.org:wpi.edu/oai:digitalcommons.wpi.edu:etd-theses-2023
Date06 September 2017
CreatorsFarmani, Mohammad
ContributorsThomas Eisenbarth, Advisor, Berk Sunar, Committee Member, Alexander M. Wyglinski, Committee Member, John A. McNeill, Department Head
PublisherDigital WPI
Source SetsWorcester Polytechnic Institute
Detected LanguageEnglish
Typetext
Formatapplication/pdf
SourceMasters Theses (All Theses, All Years)

Page generated in 0.0017 seconds