The number of gene products available for structural and functional study is increasing at an unprecedented rate as a result of the successful whole genome sequencing projects. Systematic structure determination of proteins on a genomic scale, called structural genomics, can significantly contribute to the field of protein science and to functional annotation of newly identified genes. This thesis covers different aspects of protein production in Eschericiha coli for structural studies in the context of structural genomics. Protocols have been downscaled and standardized to allow for a rapid assessment of the production characteristics for multiple proteins in parallel under a number of different conditions. Foremost, the ability of different proteins and peptide tags to affect the solubility of the recombinant protein when produced as fusion proteins has been systematically studied. Large differences in the success-rate for production of soluble protein in E. coli were found depending on the fusion partner used, with a more than two-fold increase in the number of proteins produced as soluble when comparing the best and the poorest fusion tags. For different constructs with a histidine tag, commonly used to facilitate protein purification, large differences in yield depending on the design of the expression vector were found. When comparing different fusion proteins produced from identical expression vectors, fusions to the GB1 domain were found to result in the highest yield of purified target protein, on average 25 % higher than any of the other fusions. The suitability for further structural studies was tested at an intermediate scale for proteins that were identified as soluble in the expression screening. For this purpose, protocols for rapid purification and biophysical characterization using nuclear magnetic resonance and circular dichroism spectroscopy were developed and tested on 19 proteins, of which four were structured. / QC 20100826
Identifer | oai:union.ndltd.org:UPSALLA1/oai:DiVA.org:kth-589 |
Date | January 2006 |
Creators | Hammarström, Martin |
Publisher | KTH, Skolan för bioteknologi (BIO), Stockholm : KTH |
Source Sets | DiVA Archive at Upsalla University |
Language | English |
Detected Language | English |
Type | Doctoral thesis, comprehensive summary, info:eu-repo/semantics/doctoralThesis, text |
Format | application/pdf |
Rights | info:eu-repo/semantics/openAccess |
Page generated in 0.0028 seconds