Return to search

Magnetic circular dichroism and Hall measurement of cobalt-doped zinc oxide thin films

The observation of ferromagnetism of (Ga,Mn)As by Ohno in 1998 has inspired great interest in diluted magnetic semiconductors (DMS). DMS’s features combining ferromagnetism and semiconducting make them of great potential for conceptual spintronic devices, which is a promising field of research for the emerging electronics. The practical application of DMS requires a Curie temperature well above room temperature and an intrinsic ferromagnetism. There are several types of DMS materials. The typical ones are transition-metal (TM) doped GaAs, GaN and ZnO. The TM-doped ZnO has drawn particular attention due to the observation of room temperature ferromagnetism in this system including cobalt-doped ZnO.But the origin of ferromagnetic TM-doped ZnO is still unknown after a decade’s theoretical and experimental effort on this material.
In this thesis, we do the magnetic circular dichroism(MCD) and Hall measurement of high quality Cobalt-doped ZnO thin films grown by molecular beam epitaxy (MBE). Room temperature ferromagnetism is observed in these samples. Combining the data from MCD and Hall measurement, we attribute the room temperature ferromagnetism in this system to the impurity band of the doped Cobalt cations. / published_or_final_version / Physics / Master / Master of Philosophy

Identiferoai:union.ndltd.org:HKU/oai:hub.hku.hk:10722/184262
Date January 2012
CreatorsDeng, Yuanyuan., 邓远源.
ContributorsCui, X
PublisherThe University of Hong Kong (Pokfulam, Hong Kong)
Source SetsHong Kong University Theses
LanguageEnglish
Detected LanguageEnglish
TypePG_Thesis
Sourcehttp://hub.hku.hk/bib/B50434494
RightsThe author retains all proprietary rights, (such as patent rights) and the right to use in future works., Creative Commons: Attribution 3.0 Hong Kong License
RelationHKU Theses Online (HKUTO)

Page generated in 0.002 seconds