Return to search

Caenorhabditis elegans as a Model for Host-Microbe-Drug Interactions

The microbes that inhabit the human body, our microbiota, greatly influence our physiology and propensity for disease. For instance, the gut microbiota metabolizes compounds from our diet to provide important nutrients. Similarly, the microbiota has the potential to impact drug response; directly by metabolizing drugs, or indirectly by providing metabolites to the host. The complexity of the mammalian microbiota, and the limited throughput of such models, prohibit a systematic interrogation of specific interactions between microbes and host drug response. Here, I use C. elegans and its bacterial diet as a suitable model with the scalability and genetic tractability to address these questions. In Chapter II, I describe host-bacteria-drug interactions involving the anti-pyrimidine drugs 5-FU and FUDR. In brief, we identified two main mechanisms by which bacteria affect the C. elegans response to anti-pyrimidines: (1) metabolic conversion into FUMP by uridine phospho-ribosyltransferase (upp) and (2) dietary supplementation of uracil. Chapter III will focus on a selective estrogen-receptor modulator, TAM, with no clear target in bacteria or C. elegans. I will describe my work characterizing a bacteria-dependent response to TAM involving fatty acid metabolism. Lastly, the Appendix will summarize my efforts to expand the sample space of tested host-microbe-drug interactions.

Identiferoai:union.ndltd.org:umassmed.edu/oai:escholarship.umassmed.edu:gsbs_diss-2031
Date30 April 2019
CreatorsGarcia Gonzalez, Aurian P.
PublishereScholarship@UMMS
Source SetsUniversity of Massachusetts Medical School
Detected LanguageEnglish
Typetext
Formatapplication/pdf
SourceGSBS Dissertations and Theses
RightsCopyright is held by the author, with all rights reserved., select

Page generated in 0.0021 seconds