Recognizing when we need more information and asking clarifying questions are integral to communication in our day to day life. It helps us complete our mental model of the world and eliminate confusion. Chatbots need this technique to meaningfully collaborate with humans. We have investigated a process to generate an automated system that mimics human communication behavior using knowledge graphs, weights, an ambiguity test, and a response generator. It can take input dialog text and based on the chatbot's knowledge about the world and the user it can decide if it has enough information or if it requires more. Based on that decision, the chatbot generates a dialog output text which can be an answer if a question is asked, a statement if there are no doubts or if there is any ambiguity, it generates a clarifying question. The effectiveness of these features has been backed up by an empirical study which suggests that they are very useful in a chatbot not only for crucial information retrial but also for keeping the flow and context of the conversation intact.
Identifer | oai:union.ndltd.org:BGMYU2/oai:scholarsarchive.byu.edu:etd-9660 |
Date | 31 July 2020 |
Creators | Mody, Shreeya Himanshu |
Publisher | BYU ScholarsArchive |
Source Sets | Brigham Young University |
Detected Language | English |
Type | text |
Format | application/pdf |
Source | Theses and Dissertations |
Rights | https://lib.byu.edu/about/copyright/ |
Page generated in 0.0013 seconds