Made available in DSpace on 2014-12-17T14:56:13Z (GMT). No. of bitstreams: 1
CarlosAAP_DISSERT.pdf: 1150903 bytes, checksum: a90e625336bbabe7e96da74cb85ee7aa (MD5)
Previous issue date: 2013-01-31 / Coordena??o de Aperfei?oamento de Pessoal de N?vel Superior / The pattern classification is one of the machine learning subareas that has the most
outstanding. Among the various approaches to solve pattern classification problems, the
Support Vector Machines (SVM) receive great emphasis, due to its ease of use and good
generalization performance. The Least Squares formulation of SVM (LS-SVM) finds the
solution by solving a set of linear equations instead of quadratic programming implemented
in SVM. The LS-SVMs provide some free parameters that have to be correctly
chosen to achieve satisfactory results in a given task. Despite the LS-SVMs having high
performance, lots of tools have been developed to improve them, mainly the development
of new classifying methods and the employment of ensembles, in other words, a combination
of several classifiers. In this work, our proposal is to use an ensemble and a Genetic
Algorithm (GA), search algorithm based on the evolution of species, to enhance the LSSVM
classification. In the construction of this ensemble, we use a random selection of
attributes of the original problem, which it splits the original problem into smaller ones
where each classifier will act. So, we apply a genetic algorithm to find effective values
of the LS-SVM parameters and also to find a weight vector, measuring the importance
of each machine in the final classification. Finally, the final classification is obtained by
a linear combination of the decision values of the LS-SVMs with the weight vector. We
used several classification problems, taken as benchmarks to evaluate the performance of
the algorithm and compared the results with other classifiers / A classifica??o de padr?es ? uma das sub?reas do aprendizado de m?quina que possui
maior destaque. Entre as v?rias t?cnicas para resolver problemas de classifica??o de padr?es,
as M?quinas de Vetor de Suporte (do ingl?s, Support Vector Machines ou SVM)
recebem grande ?nfase, devido a sua facilidade de uso e boa capacidade de generaliza??o.
A formula??o por M?nimos Quadrados da SVM (do ingl?s, Least Squares Support Vector
Machines ou LS-SVM) encontra um hiperplano de separa??o ?tima atrav?s da solu??o
de um sistema de equa??es lineares, evitando assim o uso da programa??o quadr?tica
implementada na SVM. As LS-SVMs fornecem alguns par?metros livres que precisam
ser corretamente selecionados para alcan?ar resultados satisfat?rios em uma determinada
tarefa. Apesar das LS-SVMs possuir elevado desempenho, v?rias ferramentas tem
sido desenvolvidas para aprimor?-la, principalmente o desenvolvimento de novos m?todos
de classifica??o e a utiliza??o de comit?s de m?quinas, ou seja, a combina??o de v?rios
classificadores. Neste trabalho, n?s propomos tanto o uso de um comit? de m?quinas
quanto o uso de um Algoritmo Gen?tico (AG), algoritmo de busca baseada na evolu??o
das esp?cies, para aprimorar o poder de classifica??o da LS-SVM. Na constru??o desse
comit?, utilizamos uma sele??o aleat?ria de atributos do problema original, que divide o
problema original em outros menores onde cada classificador do comit? vai atuar. Ent?o,
aplicamos o AG para encontrar valores efetivos para os par?metros de cada LS-SVM
e tamb?m encontrando um vetor de pesos, medindo a import?ncia de cada m?quina
na classifica??o final. Por fim, a classifica??o final ? dada por uma combina??o linear das respostas de cada m?quina ponderadas pelos pesos. Foram utilizados v?rios problemas
de classifica??o, tidos como benchmarks, para avaliar o desempenho do algoritmo e
comparamos os resultados obtidos com outros classificadores
Identifer | oai:union.ndltd.org:IBICT/oai:repositorio.ufrn.br:123456789/15472 |
Date | 31 January 2013 |
Creators | Padilha, Carlos Alberto de Ara?jo |
Contributors | CPF:10749896434, http://lattes.cnpq.br/1987295209521433, Canuto, Anne Magaly de Paula, CPF:66487099449, http://buscatextual.cnpq.br/buscatextual/visualizacv.do?id=K4790093J8, Melo, Jorge Dantas de, CPF:09463097449, http://lattes.cnpq.br/7325007451912598, Ludermir, Teresa Bernarda, CPF:36068128415, http://buscatextual.cnpq.br/buscatextual/visualizacv.do?id=K4781122D6, D?ria Neto, Adri?o Duarte |
Publisher | Universidade Federal do Rio Grande do Norte, Programa de P?s-Gradua??o em Engenharia El?trica, UFRN, BR, Automa??o e Sistemas; Engenharia de Computa??o; Telecomunica??es |
Source Sets | IBICT Brazilian ETDs |
Language | Portuguese |
Detected Language | English |
Type | info:eu-repo/semantics/publishedVersion, info:eu-repo/semantics/masterThesis |
Format | application/pdf |
Source | reponame:Repositório Institucional da UFRN, instname:Universidade Federal do Rio Grande do Norte, instacron:UFRN |
Rights | info:eu-repo/semantics/openAccess |
Page generated in 0.0019 seconds