Submitted by Automa??o e Estat?stica (sst@bczm.ufrn.br) on 2017-03-28T19:23:20Z
No. of bitstreams: 1
LaurindaFernandaSaldanhaSiqueira_TESE.pdf: 7605341 bytes, checksum: 79997d47be689f68f2042fa507097914 (MD5) / Approved for entry into archive by Arlan Eloi Leite Silva (eloihistoriador@yahoo.com.br) on 2017-03-29T00:26:00Z (GMT) No. of bitstreams: 1
LaurindaFernandaSaldanhaSiqueira_TESE.pdf: 7605341 bytes, checksum: 79997d47be689f68f2042fa507097914 (MD5) / Made available in DSpace on 2017-03-29T00:26:00Z (GMT). No. of bitstreams: 1
LaurindaFernandaSaldanhaSiqueira_TESE.pdf: 7605341 bytes, checksum: 79997d47be689f68f2042fa507097914 (MD5)
Previous issue date: 2017-01-30 / Coordena??o de Aperfei?oamento de Pessoal de N?vel Superior (CAPES) / Esta tese ? um aporte te?rico-pr?tico para a diferencia??o dos tipos de c?ncer de pr?stata por
meio de classifica??o multivariada aplicada em espectros MIR oriundos de tecidos humanos.
Para isso, buscou-se identificar diferen?as espectrais entre os graus de c?ncer de pr?stata,
determinar potenciais marcadores bioqu?micos respons?veis pela diferencia??o e comparar os
desempenhos dos modelos multivariados de classifica??o, a partir de amostras de tecidos de
pr?stata previamente classificadas em Gleason II, III e IV para c?ncer. Em um primeiro
estudo, os modelos PCA-LDA, SPA-LDA e GA-LDA foram constru?dos visando uma
metodologia para discrimina??o dos est?gios de c?ncer de pr?stata baseada na gradua??o de
Gleason e na categoriza??o de ?Baixo e Alto Graus?; e, para identifica??o de potenciais
marcadores espectrais. Os desempenhos dos modelos foram comparados. GA-LDA produziu
os resultados mais satisfat?rios, sendo melhor na perspectiva de ?Baixo e Alto graus?, com
taxas de acerto de 83% e valores de sensibilidade e especificidade 100% e 80%,
respectivamente. Em um segundo estudo, PCA-LDA/QDA e GA-LDA/QDA tiveram seus
desempenhos comparados na classifica??o de ?Baixo e Alto graus? de c?ncer de pr?stata,
considerando car?ter linear ou quadr?tico na diferencia??o. Os modelos QDA obtiveram
resultados superiores aos LDA, bem como m?todos de sele??o de vari?veis (GA) foram
melhores do que os de redu??o de vari?veis (PCA). GA-QDA obteve melhor desempenho
com taxas de acerto para amostras de calibra??o e de previs?o de 97% e 100%,
respectivamente; e sensibilidade e especificidade de 75% e 100%, respectivamente. Em um
terceiro estudo, modelos SVM independentes (linear, polinomial, RBF e quadr?tico) e os
algoritmos PCA-SVM, SPA-SVM e GA-SVM foram aplicados a fim de avaliar o uso de
m?todos de redu??o e sele??o de vari?veis em um enfoque n?o linear, para rastreamento de
?Baixo e Alto graus? do c?ncer de pr?stata. Os modelos SVM independentes obtiveram
desempenhos inferiores aos dos demais. O melhor modelo foi GA-SVM com 100% e 90%
das amostras de c?ncer ?Baixo grau? de calibra??o e previs?o corretamente classificadas,
respectivamente; e sensibilidade e especificidade de 90%. Os potenciais biomarcadores
espectrais identificados pelos estudos foram atribu?dos ?s regi?es de amidas I, II, III e
prote?nas (?1591?1483 cm-1), de DNA e RNA (?1000?1490 cm?1) e de fosforiza??o de
prote?nas (?970 cm-1). A varia??o das respectivas intensidades foi mais acentuada nos
espectros do ?Alto grau? de c?ncer. Altera??es nessas regi?es podem indicar modifica??es
metab?licas provocadas pela progress?o do c?ncer. Os m?todos propostos mostraram que
potencialmente podem ter melhores desempenhos que os m?todos tradicionais de diagn?stico.
Os resultados encontrados indicaram que a classifica??o multivariada combinada com FTMIR
possibilitou diferenciar estados patol?gicos dos tecidos principalmente nos estados
iniciais do c?ncer (?Baixo grau?) com objetividade, rapidez, acur?cia, f?cil procedimento,
independ?ncia de variabilidade intra e inter-observador, e alta sensibilidade e especificidade;
em compara??o ?s t?cnicas tradicionais que s?o operador-dependentes, tem elevada
variabilidade intra- e inter-observador, s?o morosas, tem prepara??o dif?cil, e apresentam
menores valores sensibilidade e especificidade. Ademais, as metodologias propostas aqui
poder?o implicar em ganho econ?mico e social provenientes do diagn?stico precoce e do
tratamento nos est?gios iniciais do c?ncer, possibilitando ganho em qualidade de vida e
sobrevida dos pacientes. / This thesis is a theoretical-practical contribution for differentiation of prostate cancer stages
through multivariate classification applied in MIR spectra from human tissues. The aim of
this study was to identify spectral differences between prostate cancer stages, to determine
potential biochemical markers responsible for differentiation, and to compare the performance
of multivariate classification models from prostate tissue samples previously classified in
Gleason II, III and IV for cancer. In a first study, the PCA-LDA, SPA-LDA and GA-LDA
models were constructed aiming at a methodology to discriminate prostate cancer stages
based on Gleason graduation criteria vs. the categorization of 'Low and High Degrees'; and, to
identify potential spectral markers. The models performances were compared. GA-LDA
produced the most satisfactory results, being better in the perspective of 'Low and High
degrees', with correct classification rate of 83% and sensitivity and specificity values 100%
and 80%, respectively. In a second study, PCA-LDA/QDA and GA-LDA/QDA had their
performances compared in the classification of 'Low and High grades' of prostate cancer,
considering linear or quadratic character in the differentiation. The QDA models obtained
better results than the LDA, as well as variables selection method (GA) were better than the
variables reduction method (PCA). GA-QDA obtained better performance with classification
rates for calibration and prediction samples of 97% and 100%, respectively; and sensitivity
and specificity of 75% and 100%, respectively. In a third study, independent SVM models
(linear-, polynomial-, RBF- and quadratic-SVMs) and the PCA-SVM, SPA-SVM and GASVM
algorithms were applied in order to evaluate the use of variables reduction and selection
methods in a nonlinear approach for screening 'Low and High grades' of prostate cancer.
Independent SVM models had lower performance than the others. The best model was GASVM
with 100% and 90% of 'Low Grade' calibration and prediction samples correctly
classified, respectively; and sensitivity and specificity of 90%. The potential spectral
biomarkers identified by the studies were attributed to the regions of amides I, II, III and
proteins (?1,591?1,483 cm-1), DNA and RNA (?1,000?1,490 cm-1) and protein
phosphorylation (?970 cm-1). The intensities variation was more pronounced in 'High degree'
spectra. Changes in these regions may indicate metabolic changes caused by cancer advance.
The proposed methods showed potentially better performance than traditional diagnostic
methods. The results showed that the multivariate classification combined with FT-MIR can
differentiate pathological states of tissues mainly in the early stages of cancer ('Low grade')
with speed, accuracy, easy proceedings, independence of intra- and inter-observer variability,
and high sensitivity and specificity; in comparison to traditional techniques (which suffer with
operator-dependence, high intra- and inter-observer variability, high time consuming, difficult
preparation and lower sensitivity and specificity). In addition, the methodologies proposed
here may imply economic and social benefits based on early diagnosis and treatments,
allowing improvement in quality of life and survival of patients.
Identifer | oai:union.ndltd.org:IBICT/oai:repositorio.ufrn.br:123456789/22512 |
Date | 30 January 2017 |
Creators | Siqueira, Laurinda Fernanda Saldanha |
Contributors | 03144855464, http://lattes.cnpq.br/6928918856031880, Bicudo, Tatiana de Campos, 25935096862, http://lattes.cnpq.br/2712586287719863, Moraes, Edgar Perin, 13563054827, http://lattes.cnpq.br/0705932816454884, Silva, Edvan Cirino da, 55227872449, http://lattes.cnpq.br/1777102714370218, Almeida, Luciano Farias de, 85474550430, http://lattes.cnpq.br/9741649526799543, Lima, Kassio Michell Gomes de |
Publisher | PROGRAMA DE P?S-GRADUA??O EM QU?MICA, UFRN, Brasil |
Source Sets | IBICT Brazilian ETDs |
Language | Portuguese |
Detected Language | English |
Type | info:eu-repo/semantics/publishedVersion, info:eu-repo/semantics/doctoralThesis |
Source | reponame:Repositório Institucional da UFRN, instname:Universidade Federal do Rio Grande do Norte, instacron:UFRN |
Rights | info:eu-repo/semantics/openAccess |
Page generated in 0.003 seconds