Return to search

Lithium intercalation in titanium based oxides and sulfides

The Li-Ti-S ternary system was investigated. The elements and/or compounds, such as lithium sulfide, titanium disulfide and titanium trisulfide, were combined at high temperature (typically 500-900°C). The synthesized compounds containing one or more phases were structurally characterized using x-ray powder diffraction. When Lix TiS₂, (0 ≤ x ≤ 1) was synthesized at elevated temperature, a new polytype, 3R-LixTiS₂, was found for some values of x. The regions of stability of the 3R polytype and the well known 1T polytype are presented. Lithium can be intercalated or de-intercalated from both polytypes at room temperature. Ambient temperature Li/3R-LixTiS₂ cells have higher average voltages than Li/1T-Li TiS₂, cells.
The lithium spinel oxides are another class of
materials receiving attention as cathode materials in
lithium secondary batteries. LiTi₂0₄ is metallic, has the
cubic spinel structure and reacts with one further lithium
atom to form Li₂Ti₂0₄. The related spinel Li₄/₃Ti₅/₃⁰₄͵
which is electrically insulating, also reacts reversibly
with one lithium atom. Both Li₂Ti₂0₄ and Li₄/₃Ti₅/₃⁰₄͵
cells cycle reversibly, but have subtle differences in their
voltage profiles. The difference in cell behaviour was
interpreted based on the band structure of Li₁˖xTi₂₋x⁰₄.
The mixed spinels LiMnyTi₂₋y⁰₄ (0 ≤ y ≤ 2) were also investigated. These compounds were synthesized at high temperature but their performance as cathodes in lithium batteries was not encouraging. / Science, Faculty of / Physics and Astronomy, Department of / Graduate

Identiferoai:union.ndltd.org:UBC/oai:circle.library.ubc.ca:2429/27860
Date January 1988
CreatorsColbow, Kevin Michael
PublisherUniversity of British Columbia
Source SetsUniversity of British Columbia
LanguageEnglish
Detected LanguageEnglish
TypeText, Thesis/Dissertation
RightsFor non-commercial purposes only, such as research, private study and education. Additional conditions apply, see Terms of Use https://open.library.ubc.ca/terms_of_use.

Page generated in 0.0013 seconds