Cette étude concerne le développement d’un dispositif innovant de type biocapteur, pour le diagnostic et le traitement local de cancers précoces. Cette technologie vise à diagnostiquer au plus tôt certains cancers, afin de les traiter de façon beaucoup plus efficace, en comparaison avec les techniques actuelles, souvent longues et mutilantes. Des microplots de silice mésoporeuse, fonctionnalisés azotures, sont déposés par impression jet d’encre (IJP) à la surface de fibres optiques. Le matériau présente une porosité auto-organisée, grâce au mécanisme d’auto-assemblage induit par évaporation (EISA). Par la suite, les microplots azotures sont fonctionnalisés spécifiquement par chimie click (click chemistry) par reaction avec des molécules alcynes. Dans le cas du diagnostic, cette fonctionnalisation permet le greffage de protéines et d’anticorps capables de reconnaître les marqueurs surexprimés à la surface des cellules cancéreuses. Les protéines et anticorps sont préalablement marqués par des fluorochromes, pour induire un transfert d’énergie (effet FRET ou Fluorescence Resonance Energy Transfer) lors de la reconnaissance des marqueurs cancéreux. Le principe de détection du dispositif repose ainsi sur une modification de la signature de fluorescence. Dans le cas de la thérapie, des photosensibilisateurs (PS) sont greffés sur les microplots pour permettre un traitement local par photothérapie dynamique (PDT).L’objectif global de l’étude vise à améliorer la sensibilité de détection du dispositif pour le diagnostic et à montrer l’efficacité de traitement dans le cas de la thérapie. Pour cela, les protocoles de réaction click et de greffage des protéines ont été optimisés et l’influence de la structuration de la porosité a été étudiée. Enfin, la sensibilité du dispositif a été caractérisée en fonction de plusieurs paramètres (type de matériaux, type de cellules cancéreuses, etc.). / This study focuses on the development of a new biosensor device for the diagnosis and local treatment of precocious tumors. This technology aims to diagnose cancers at an early stage to increase the treatment efficiency compared to existing techniques that are usually damaging. Mesoporous silica microdots with azide functions are deposited onto the surface of optical fibers using the inkjet-printing (IJP) process. The material shows a self-organized porosity, due to the evaporation-induced self-assembly (EISA) mechanism. Then, the azide microdots can be further functionalized specifically using click chemistry by reaction with alkyne precursors. For the diagnosis, the functionalization allows the grafting of proteins and antibodies capable of recognizing the increase in marker concentration at the surface of cancerous cells. These proteins and antibodies are labelled with fluorophores to induce a fluorescence energy transfer (FRET, Fluorescence Resonance Energy Transfer) with the recognition of tumorous markers. The detection principle is based on the modification change of the fluorescence signature. For the therapy, photosensitizers (PS) are anchored onto the microdots to allow the local treatment using photodynamic therapy (PDT). The main aim of this study was to optimize the device sensitivity concerning the diagnosis step, and to show the treatment efficiency concerning the therapy step. On that purpose, the protocols of click reaction and the grafting of proteins have been optimized, which are also influenced by the porosity organization that has been studied. Finally, the device sensitivity has been characterized as a function of multiple factors (materials, cancer cells type, etc.).
Identifer | oai:union.ndltd.org:theses.fr/2019LIMO0038 |
Date | 29 March 2019 |
Creators | Trihan, Romain |
Contributors | Limoges, Lejeune, Martine, Rossignol, Fabrice |
Source Sets | Dépôt national des thèses électroniques françaises |
Language | French |
Detected Language | French |
Type | Electronic Thesis or Dissertation, Text |
Page generated in 0.0026 seconds