Computational Fluid Dynamic Simulation of Intracranial Aneurysms Analysis of time-dependent changes of hemodynamic parameters - the road the clinical use Hemodynamics are involved in the genesis of intracranial aneurysms and time- dependent changes of their parameters lead to aneurysm growth, stabilization or rupture. Definition of these changes using computational fluid hemodynamics could significantly contribute to the understanding of aneurysmal development and rupture and could enable the routine use of mathematical simulations. In this study, computational fluid dynamics were performed for nine incidental aneurysms. Five aneurysms were monitored throughout time and factors leading to aneurysm rupture were analyzed. In four aneurysms the influence of the hemodynamics on the growth was defined. Major growth occurred in areas of low wall shear stress and oscillatory index. These areas increased in size during growth time. Contrary to this, neck shape remodeling occurred in areas with large wall shear stress and pressure. Throughout the follow-up of ruptured aneurysms, the minimal wall shear stress decreased, and the area of low wall shear stress increased significantly. The results indicate that decreasing values of minimal wall shear stress and increasing values of low wall shear stress area...
Identifer | oai:union.ndltd.org:nusl.cz/oai:invenio.nusl.cz:455023 |
Date | January 2021 |
Creators | Sejkorová, Alena |
Contributors | Hejčl, Aleš, Vaverka, Miroslav, Přibáň, Vladimír |
Source Sets | Czech ETDs |
Language | Czech |
Detected Language | English |
Type | info:eu-repo/semantics/doctoralThesis |
Rights | info:eu-repo/semantics/restrictedAccess |
Page generated in 0.0018 seconds