Return to search

Molekulární mechanismy synchronizace fetálních cirkadiánních hodin / Molecular mechanisms of entrainment of the fetal circadian clocks

In order to adapt to changing external conditions, organisms developed the endogenous biological clock for predicting daily alterations. This so-called circadian system drives functions and processes in the whole body with an approximately 24h period. The central oscillator, located in hypothalamic suprachiasmatic nuclei (SCN), is synchronized by light and subsequently sends the information about the time of the day to the rest of the body. Even in the ontogenesis, the functional SCN clock is crucial for proper development as well as health later in life. Since the maturation of embryonic SCN is not completed before birth, maternal signals seem to play a fundamental role in setting and synchronizing the fetal clock. During my PhD studies, we focused on elucidating the nature of maternal signals and their diverse impact on fetal SCN of rat and mouse models. We have revealed that developing SCN is able to sense distinct signals related to various maternal behavioral regimes. Importantly, we have discovered eminent role of glucocorticoids in synchronizing the fetal SCN, along with their ability to accelerate SCN development. These observations point out the importance of regular daily routine and noxious effect of stress during pregnancy. Since the mother communicates with the fetus through placenta...

Identiferoai:union.ndltd.org:nusl.cz/oai:invenio.nusl.cz:447135
Date January 2021
CreatorsLužná, Vendula
ContributorsSumová, Alena, Šauman, Ivo, Štaud, František
Source SetsCzech ETDs
LanguageEnglish
Detected LanguageEnglish
Typeinfo:eu-repo/semantics/doctoralThesis
Rightsinfo:eu-repo/semantics/restrictedAccess

Page generated in 0.0017 seconds