Return to search

Sistema imunologico artificial para otimização multiobjetivo / Artificial immune system for multiobjetive optimization

Orientador: Akebo Yamakami / Dissertação (mestrado) - Universidade Estadual de Campinas, Faculdade de Engenharia Eletrica e de Computação / Made available in DSpace on 2018-08-11T03:11:24Z (GMT). No. of bitstreams: 1
Rampazzo_PriscilaCristinaBerbert_M.pdf: 1295026 bytes, checksum: ad0738bc161445ec5b9f0db0db565f09 (MD5)
Previous issue date: 2008 / Resumo: O objetivo desta dissertação é explorar a utilização de um Sistema Imunológico Artificial, baseado no princípio de Seleção Clonal, na resolução de problemas de Otimização Multiobjetivo. Os Sistemas Imunológicos Artificiais apresentam, em sua estrutura elementar, as principais características requeridas para a resolução de problemas de Otimização Multiobjetivo: exploração, explotação, paralelismo, elitismo, memória, diversidade, mutação e clonagem proporcionais à afinidade e população dinâmica. A abordagem proposta utiliza o conceito de Pareto dominância e factibilidade para identificar os anticorpos (soluções) que devem ser clonados. Nos experimentos, foram consideradas algumas situações importantes que podem aparecer nos problemas reais: presença de restrições (lineares e não-lineares) e formato da Fronteira de Pareto (convexa, côncava, contínua, descontínua, discreta, não-uniforme). Na maioria dos problemas, o algoritmo obteve resultados bons e competitivos quando comparados com as propostas da literatura.
Palavras-chave: Otimização Multiobjetivo, Algoritmos Bio-inspirados, Sistemas Imunológicos Artificiais, Seleção Clonal / Abstract: The aim of this work is to explore an Artificial Immune System, based on the Clonal Selection principle, in the solution of Multiobjective Optimization problems. Artificial Immune Systems have, in their elementary structure, the main characteristics required to solve Multiobjective Optimization problems: exploration, exploitation, paralelism, elitism, memory, diversity, mutation and proliferation proportional to the affinity, and dynamic repertorie. The proposed algorithm uses the Pareto dominance concept and feasibility to identify the antibodies (solutions) that must to be cloned. In the experiments, some important situations that occurs in real problems were considered: the presence of constraints (linear and non-linear) and Pareto Front format (convex, concave, continuous, discontinuous, discrete, non-uniforme). In the major part of the problems, the algorithm obtains good and competitive results when compared with approaches from the literature.
Keywords: Multiobjective Optimization, Bio-inspired Algorithms, Artificial Immune Systems, Clonal Selection / Mestrado / Telecomunicações e Telemática / Mestre em Engenharia Elétrica

Identiferoai:union.ndltd.org:IBICT/oai:repositorio.unicamp.br:REPOSIP/261870
Date03 October 2008
CreatorsRampazzo, Priscila Cristina Berbert, 1984-
ContributorsUNIVERSIDADE ESTADUAL DE CAMPINAS, Yamakami, Akebo, 1947-, Silva, Leandro Nunes de Castro, Moretti, Antonio Carlos, Zuben, Fernando Jose Von
Publisher[s.n.], Universidade Estadual de Campinas. Faculdade de Engenharia Elétrica e de Computação, Programa de Pós-Graduação em Engenharia Elétrica
Source SetsIBICT Brazilian ETDs
LanguagePortuguese
Detected LanguagePortuguese
Typeinfo:eu-repo/semantics/publishedVersion, info:eu-repo/semantics/masterThesis
Format108p. : il., application/pdf
Sourcereponame:Repositório Institucional da Unicamp, instname:Universidade Estadual de Campinas, instacron:UNICAMP
Rightsinfo:eu-repo/semantics/openAccess

Page generated in 0.0022 seconds