Return to search

Forged by giants: understanding the dwarf carbon stars

Dwarf carbon (dC) stars are main-sequence stars with carbon molecular bands (C_2, CN, CH) in their optical spectra. They are an important class of post-mass transfer binaries since, as main-sequence stars, dCs cannot have produced carbon themselves. Rather, the excess carbon originated in an evolved companion, now a white dwarf, and was transferred to the dC. Because of their complex histories, dCs are an excellent sample for testing stellar physics, including common-envelope evolution, wind accretion, mass transfer efficiencies, and accretion spin-up. However, their fundamental properties remain a mystery, and this impedes efforts to use dCs to constrain the evolution of binary systems.

Here, I have investigated the observed properties of dCs, both as a population and as individual objects. Using multi-epoch spectroscopy, I constrained the dC binary fraction to be consistent with 100% binarity. The best-fit orbital separation distribution agrees with the few known dC orbital periods, and suggests a bimodal distribution (one sample with mean periods of hundreds of days, the other thousands of days). I also built a set of optical templates to find and classify additional dCs in spectroscopic surveys.

Further, I discovered periodic variability in photometry of 34 dCs, dramatically increasing the number of measured periods. This allowed me to investigate mass transfer mechanisms that are likely to be important in the formation of dCs. Interestingly, some of these objects have short periods (P < 2d), indicating they have gone through a common-envelope phase. I explored the implications of these short-period dCs and how they will allow for constraints to be placed on the physics of common-envelope evolution.

Finally, I searched for signs of spin-up and activity in dCs using X-ray emission. From this, I found that dCs are consistent with being rapid rotators, similar to what is observed in samples of normal young dwarfs.

In summary, this dissertation presents the most extensive set of dC observational properties that has been compiled to date. I have confirmed the binary origin of dCs and linked some to post-common-envelope binaries. My work has provided a firmer foundation for the use of dCs to explore many essential astrophysical phenomena.

Identiferoai:union.ndltd.org:bu.edu/oai:open.bu.edu:2144/46988
Date21 September 2023
CreatorsRoulston, Benjamin R.
ContributorsHermes, J.J., Green, Paul J.
Source SetsBoston University
Languageen_US
Detected LanguageEnglish
TypeThesis/Dissertation
RightsAttribution 4.0 International, http://creativecommons.org/licenses/by/4.0/

Page generated in 0.0021 seconds