Racing drivers always want to traverse path at vehicle’s maximum performance limits while keeping the vehicle at its ideal trajectory. The main objective of this report is to elaborate strategy for the path following problem in which driver has to follow the predefined 2D roads. New steering controller design for closed loop racing driver model in Dymola vehicle dynamics library is developed. The methodology proposed by Sharp et al. [2] is followed with the optimal velocity profile that tries to mimic the actions of the real drivers in real time scenarios. Vehicle handling limits i.e. longitudinal and lateral limits are defined before simulation. While travelling in the neighbourhood of optimal velocity on the straight road as well as during the curves, the performance of the steering controller is tested by conducting the test on J turn, Clothoid, Extended chicane and the closing curve path and also tested during the different environment effects e.g. when there is a side wind affecting the vehicle. Performance of existing and new steering controllers discussed and compared in result chapter. It is ensured that the drawbacks in the existing steering controller are eliminated by using the proposed methodology in new implemented steering controller. Key Words: Driver Model, Steering Controller, Path following, Velocity profile
Identifer | oai:union.ndltd.org:UPSALLA1/oai:DiVA.org:kau-11858 |
Date | January 2012 |
Creators | Ahmed, Umair |
Publisher | Karlstads universitet, Avdelningen för fysik och elektroteknik |
Source Sets | DiVA Archive at Upsalla University |
Language | English |
Detected Language | English |
Type | Student thesis, info:eu-repo/semantics/bachelorThesis, text |
Format | application/pdf |
Rights | info:eu-repo/semantics/openAccess |
Page generated in 0.0021 seconds