Na implementação de controladores MPC, o desenvolvimento e a definição dos modelos do processo é a etapa mais crítica e a que mais consome tempo. Normalmente, os modelos são obtidos através de testes de identificação realizados na planta, onde se observam as respostas em malha aberta das variáveis controladas a perturbações introduzidas individualmente nas variáveis manipuladas. Por este motivo, a aplicação das técnicas de identificação em malha fechada a controladores MPC com restrições nas entradas e/ou saídas é, reconhecidamente, uma área de aplicação de interesse crescente. Neste trabalho é estudada a modificação do controlador MPC convencional através da inclusão de uma nova restrição de excitação em adição às restrições normais do controlador, com a finalidade de perturbar o processo de forma controlada, propiciando a identificação em malha fechada de modelos mais precisos do processo, a partir de modelos aproximados. São desenvolvidas quatro abordagens para implementação desta filosofia e apresentadas simulações para vários casos teóricos, utilizando modelos de dois processos industriais obtidos de artigos recentes relacionados a controle multivariável com incertezas nos modelos. Os resultados das simulações indicam que os dados produzidos permitiram a correta identificação dos modelos tanto no caso nominal (modelo igual à planta) quanto para casos onde a planta era diferente do modelo empregado para as predições do MPC. / In MPC implementation, the process models development and definition is the most critical and time consuming task. Normally, the models are obtained through plant identification tests where perturbations are individually introduced in the manipulated variable while the controlled variable open-loop behavior is observed. For this reason, the application of closed-loop identification techniques to MPC controllers with input or output constraints is a growing interest area. This work studies the traditional MPC controller modification with the inclusion of a new excitation constraint, in addition to input or output constraints, whose function is to perturb the process in a controlled way, permitting the closed-loop identification of more precise models, based on known approximated models. Four implementation methodologies are developed and some simulated theoretical cases are presented using models of two industrial processes extracted from recent papers related to multivariable control with models uncertainty. The simulation results show that the obtained datasets allow the identification of the correct model, both in the nominal case (when the model used by MPC is the true model of the plant) and in the uncertain case, where the model used by MPC is different from the true model.
Identifer | oai:union.ndltd.org:usp.br/oai:teses.usp.br:tde-15092008-153026 |
Date | 11 April 2008 |
Creators | Ballin, Sérgio Luiz |
Contributors | Odloak, Darci |
Publisher | Biblioteca Digitais de Teses e Dissertações da USP |
Source Sets | Universidade de São Paulo |
Language | Portuguese |
Detected Language | Portuguese |
Type | Dissertação de Mestrado |
Format | application/pdf |
Rights | Liberar o conteúdo para acesso público. |
Page generated in 0.0021 seconds