High-resolution lithostratigraphic data from rock sequences known as the Indidura Formation near Parras de La Fuente, Coahuila, NE Mexico, led to achieve a significant improvement of our knowledge of that Formation. The results of this study indicate for the first time that the sequence at Parras de La Fuente developed from the deposition of calcareous cyanobacterial microspheroids that accumulated under perennial blooms during the Late Cenomanian through the Middle Turonian. Multi-proxy analyses included sedimentological, petrographical, scanning electron microscopy, stable isotope, trace element geochemistry, and paleontological data. The combined results allowed the correlation of δ13C and anomalies in Mo, V, and Cr with the abundance and predominance of calcareous cyanobacterial microspheroids, which were the main suppliers of the carbonate components and the organic matter throughout deposition of the Indidura Formation in the Parras de la Fuente area, under dysoxic/anoxic conditions. Conspicuous interbeds of dark and light-gray laminated marly calcilutites, and dark-gray marlstones that characterize the stratigraphic sequence formed in response to external forcing climatic factors of millennial-scale Milankovitch cycles (ca. 20 ka precession). At the microscopic level, the prominent dark and light-gray laminae were formed during cycles similar to the 10 to 15 years solar irradiance maximum, and represent alternating periods of high and low calcareous cyanobacterial microspheroids productivity.
Identifer | oai:union.ndltd.org:fiu.edu/oai:digitalcommons.fiu.edu:etd-1041 |
Date | 02 June 2006 |
Creators | Duque-Botero, Fabian |
Publisher | FIU Digital Commons |
Source Sets | Florida International University |
Detected Language | English |
Type | text |
Format | application/pdf |
Source | FIU Electronic Theses and Dissertations |
Page generated in 0.0022 seconds