Sandy beaches are vulnerable to extreme erosion during large storms, as well as gradual erosion processes over months and years. Without monitoring and adaptation strategies, erosion can put people, homes, and other infrastructure at risk. To effectively manage beach resources and respond to erosion hazards, coastal managers must have a reliable means of surveying the beach to monitor erosion and accretion. These elevation surveys typically incorporate traditional ground-based surveying methods or lidar surveys flown from large, fixed-wing aircraft. While both strategies are effective, advancements in photogrammetric technology offers a new solution for topographic surveying: Structure from Motion (SfM). Using a set of overlapping aerial photographs, the SfM workflow can generate accurate topographic surveys, and promises to provide a fast, inexpensive, and reliable method for routine beach surveying. Unmanned aerial vehicles (UAVs) are often successfully employed for SfM surveys but can be limited by poor weather ad government regulations, which can make flying difficult or impossible. To circumvent these limitations, a digital camera can be attached to a tall pole on a mobile platform to obtain aerial imagery, avoiding the restrictions of UAV flight. This thesis compares these two techniques of image acquisition for routine beach monitoring. Three surveys were conducted at monthly intervals on a beach on the central South Carolina coast, using both UAV and pole photogrammetry. While both methods use the same software and photogrammetric workflow, the UAV produced better results with far fewer processing artifacts compared to pole photogrammetry. / Master of Science / Beach environments are vulnerable to extreme erosion, especially in the face of sea level rise and large storms like hurricanes. Monitoring erosion is a crucial part of a coastal management strategy, to mitigate risk to coastal hazards like extreme erosion, storm surge, and flooding. Erosion monitoring usually involves repeated elevation surveys to determine how much sand is being lost from the beach, and where that sand is being eroded away. Within the past decade, Structure from Motion (SfM) photogrammetry, the process of deriving ground elevation maps from multiple overlapping aerial photographs, has become a common technique for repeated elevation surveys. Unmanned aerial vehicles (UAVs) are often used to gather aerial imagery for SfM elevation surveys but are limited by poor weather conditions and government flight regulations, both of which can prohibit flight. However, similar aerial photographs can be taken with a camera mounted atop a tall pole, which can be used in wider range of weather conditions and without government regulations, providing an alternative when UAV flight is not an option. This study compares these two platforms for routine beach erosion monitoring surveys, evaluating them based on performance, cost, and feasibility. The UAV system is found to be fast, affordable, and effective, while the pole photogrammetry system is heavily affected by the slow speed of surveying and processing errors that make it unusable without significant improvement.
Identifer | oai:union.ndltd.org:VTETD/oai:vtechworks.lib.vt.edu:10919/104997 |
Date | 14 September 2021 |
Creators | Gonzales, Jack Joseph |
Contributors | Geography, Pingel, Thomas, Shao, Yang, Dura, Tina |
Publisher | Virginia Tech |
Source Sets | Virginia Tech Theses and Dissertation |
Detected Language | English |
Type | Thesis |
Format | ETD, application/pdf |
Rights | In Copyright, http://rightsstatements.org/vocab/InC/1.0/ |
Page generated in 0.0017 seconds