Return to search

The Effects of Nutrient Enrichment on the Decomposition of Belowground Organic Matter in a Sagittaria Lancifolia - Dominated Oligohaline Marsh

Wetlands improve water quality through sedimentation and the uptake of excess nutrients. As human population increases in the coastal zone, wetlands receive greater nutrient inputs. These additional nutrients may accelerate microbial activity, leading to faster decomposition rates. This decomposition could exceed belowground organic matter production, resulting in a net reduction in soil organic matter accumulation and vertical marsh accretion. The effects of nutrient enrichment on belowground organic matter decomposition in subtropical marshes have received little attention. As such, this research examined the effects of four levels of nitrogen combined with two levels of phosphorus enrichment on belowground decomposition through the use of cotton strip and litter bag assays in a Sagittaria lancifolia dominated marsh in Madisonville, Louisiana. Litter bags contained S. lancifolia root or shoot tissues; roots were of uniform tissue quality while shoots were from unenriched or enriched soils. Soil nitrogen and phosphorus applications both significantly increased belowground decomposition rates of cotton strips. The effect of tissue quality on shoot decomposition was dependent on nitrogen soil enrichment level. At low nitrogen enrichment levels, low quality shoot tissues decomposed more slowly than high quality tissues; this relationship was reversed at high nitrogen soil enrichments. Also, the effect of phosphorus enrichment on shoot decomposition was dependent on the level of nitrogen enrichment. Phosphorus soil enrichment only increased decomposition at the high nitrogen levels. Similarly, phosphorus enrichment combined with moderate nitrogen enrichments raised the decomposition rate of labile root tissue components. However, neither nitrogen nor phosphorus enrichments affected the decomposition rate of recalcitrant root components. Cellulose decomposition was positively correlated with interstitial pH. Shoot decomposition and the recalcitrant root decomposition rate also positively correlated with interstitial pH. This research demonstrated that nitrogen and phosphorus soil enrichments affect the decomposition of roots, shoots, and cotton strips, though in different ways. Variations in the nutrient and carbon quality of the individual tissues, as well as abiotic factors such as pH, modify the effects of soil nutrient enrichments on the decomposition of different tissues in the study marsh.

Identiferoai:union.ndltd.org:LSU/oai:etd.lsu.edu:etd-11042004-125810
Date04 November 2004
CreatorsLaursen, Kristen Raye
ContributorsCharles E. Sasser, Irving A. Mendelssohn, Robert P. Gambrell
PublisherLSU
Source SetsLouisiana State University
LanguageEnglish
Detected LanguageEnglish
Typetext
Formatapplication/pdf
Sourcehttp://etd.lsu.edu/docs/available/etd-11042004-125810/
Rightsunrestricted, I hereby certify that, if appropriate, I have obtained and attached herein a written permission statement from the owner(s) of each third party copyrighted matter to be included in my thesis, dissertation, or project report, allowing distribution as specified below. I certify that the version I submitted is the same as that approved by my advisory committee. I hereby grant to LSU or its agents the non-exclusive license to archive and make accessible, under the conditions specified below and in appropriate University policies, my thesis, dissertation, or project report in whole or in part in all forms of media, now or hereafter known. I retain all other ownership rights to the copyright of the thesis, dissertation or project report. I also retain the right to use in future works (such as articles or books) all or part of this thesis, dissertation, or project report.

Page generated in 0.0016 seconds