Return to search

The Effects of Aluminum Concentration on Growth Responses in Six Spartina alterniflora Genotypes

Elevated soluble aluminum concentrations can adversely affect plant growth. During a drought, wetland soils may experience higher than normal soluble aluminum due to the oxidation of metal sulfides and resulting decreases in pH, which mobilizes metallic cations. Louisiana coastal salt marshes were subject to a record-setting drought in the winter and spring of 2000 which was coincident with the die-off of large expanses of salt marsh, termed " brown marsh ". Spartina alterniflora was the primary plant species affected. However, because some individuals within large areas of die-off survived the brown marsh event, they may have been the more resistant genotypes. To determine if genotypic resistance to aluminum existed, six genotypes of the common salt-marsh cord-grass Spartina alterniflora, five surviving genotypes, and a commercial variety (Vermillion), were dosed with aluminum chloride (AlCl<sub>3</sub>) at concentrations ranging from 0.2 mM to 10.8 mM. No death was observed in any of the genotypes at aluminum concentrations as high as 10.8 mM, although growth rates decreased to near zero. The results of this study indicate that, as a species, the resistance of Spartina alterniflora to aluminum may surpass the threshold of any plant species studied to date. All genotypes in the experiment were found to tolerate extremely high concentrations of aluminum, although declines in stem elongation rate and cumulative stem height were evident in all Al treatments. I estimated the differential aluminum tolerance by using the first significant decrease in growth rate when the genotype x concentration effect was significant. The first significant decrease approach had the best resolution for determining genotype variability when used with the stem elongation data. Although insufficient evidence exists to determine if aluminum toxicity caused the brown marsh event in Louisiana, based on the results of this thesis, the aluminum concentrations would have had to reach extremely high levels to have been the sole cause of the brown marsh dieback.

Identiferoai:union.ndltd.org:LSU/oai:etd.lsu.edu:etd-12152004-111012
Date20 December 2004
CreatorsBecker, Daniel Farrell
ContributorsLawrence Rouse, Irving Mendelssohn, Robert Gambrell
PublisherLSU
Source SetsLouisiana State University
LanguageEnglish
Detected LanguageEnglish
Typetext
Formatapplication/pdf
Sourcehttp://etd.lsu.edu/docs/available/etd-12152004-111012/
Rightsunrestricted, I hereby certify that, if appropriate, I have obtained and attached herein a written permission statement from the owner(s) of each third party copyrighted matter to be included in my thesis, dissertation, or project report, allowing distribution as specified below. I certify that the version I submitted is the same as that approved by my advisory committee. I hereby grant to LSU or its agents the non-exclusive license to archive and make accessible, under the conditions specified below and in appropriate University policies, my thesis, dissertation, or project report in whole or in part in all forms of media, now or hereafter known. I retain all other ownership rights to the copyright of the thesis, dissertation or project report. I also retain the right to use in future works (such as articles or books) all or part of this thesis, dissertation, or project report.

Page generated in 0.0022 seconds