Biofouling has been an economically and environmentally costly problem to mankind ever since they set sail. Biofouling causes frictional drag leading to slow vessel speeds, and increased fuel costs. Antifouling (AF) coatings containing biocides have been used for decades, however, since some biocides have shown undesired effects towards the environment, a non-toxic solution to combat fouling is desired. Subsequently, fouling release (FR) coatings quickly gained acceptance as a non-toxic approach to contend with biofouling. Unlike AF coatings, FR coatings not necessarily prevent settlement of organisms, they permit weak adhesion which is easily released by water shear or light grooming. The siloxane-polyurethane (SiPU) coatings based on the concept of self-stratification is a non-toxic and durable approach to prepare FR coatings. In this work, several approaches were considered to optimize surface properties of SiPU coatings. Incorporation of phenyl-methyl silicone oils led to improved FR properties towards several marine organisms in laboratory assays and in ocean field immersion. Enhancement in FR properties may be attributed to slowly exuding silicone oil providing surface lubricity, weakening the adhesion of marine organisms. Addition of diphenyldimethyl siloxane in to SiPU coatings at different ratios resulted in micro-scale surface topographical features which negatively affected microfouling-release while several coatings displayed good FR performance towards macrofouling organisms. In another study, decreasing the acid group content helped to improve FR performance towards barnacles, but FR performance towards diatoms were compromised. Novel amphiphilic siloxane-polyurethane (AmSiPU) coatings from polyisocyanate pre-polymers modified with polydimethyl siloxane and polyethylene glycol displayed excellent FR properties towards several marine organisms during laboratory assays. These AmSiPU coatings show promise as contenders to commercial FR standards. Initial development of SiPU coatings with hydrophilic surfaces showed promise, as the coatings showed rapidly rearranging surfaces with comparable FR performance to commercial standards which claim hydrophilic surface properties. During freshwater field immersion trials, SiPU coatings displayed excellent mussel FR performance up to 3 years. Surface analysis suggested that solvent content affected self-stratification and morphology of SiPU coatings. The SiPU coating system is a highly tunable, tough, environmentally friendly, and practical FR solution which can evolve along with non-toxic commercial marine coatings. / Office of Naval Research (Grant number N00014-12-1-0482) / SSPC / Valpar / American Coatings Association / North Dakota State University. College of Science and Mathematics
Identifer | oai:union.ndltd.org:ndsu.edu/oai:library.ndsu.edu:10365/29092 |
Date | January 2016 |
Creators | Galhenage, Teluka Pasan |
Publisher | North Dakota State University |
Source Sets | North Dakota State University |
Detected Language | English |
Type | text/dissertation |
Format | application/pdf |
Rights | NDSU Policy 190.6.2, https://www.ndsu.edu/fileadmin/policy/190.pdf |
Page generated in 0.0019 seconds