Return to search

Microstructural and Mechanical Characterization of Multilayered Iron Electrodeposits

Multilayered iron electrodeposits composed of alternating layers of coarse-grained iron (grain size: 1.87 μm; (110) texture; hardness: 177 VHN) and fine-grained iron (grain size: 132 nm; (211) texture; hardness: 502 VHN), with layer thicknesses ranging from ~0.2-7 μm were successfully synthesized. The average hardness of the multilayered electrodeposits increased from 234 VHN to 408 VHN with decreasing layer thickness, consistent with a Hall-Petch type behaviour. In three-point bending tests, they failed in a macroscopically brittle manner although local ductility was observed in certain layers. Fractography analysis has shown that strain incompatibility between alternating layers contributes to the brittle nature of these materials. This study has demonstrated the possibility of applying a multilayered structure design to tailor the microstructure and mechanical properties of electrodeposited iron.

Identiferoai:union.ndltd.org:LACETR/oai:collectionscanada.gc.ca:OTU.1807/29505
Date23 August 2011
CreatorsChan, Catherine
ContributorsErb, Uwe
Source SetsLibrary and Archives Canada ETDs Repository / Centre d'archives des thèses électroniques de Bibliothèque et Archives Canada
Languageen_ca
Detected LanguageEnglish
TypeThesis

Page generated in 0.0018 seconds