Return to search

On Code Design for Interference Channels

abstract: There has been a lot of work on the characterization of capacity and achievable rate regions, and rate region outer-bounds for various multi-user channels of interest. Parallel to the developed information theoretic results, practical codes have also been designed for some multi-user channels such as multiple access channels, broadcast channels and relay channels; however, interference channels have not received much attention and only a limited amount of work has been conducted on them. With this motivation, in this dissertation, design of practical and implementable channel codes is studied focusing on multi-user channels with special emphasis on interference channels; in particular, irregular low-density-parity-check codes are exploited for a variety of cases and trellis based codes for short block length designs are performed.

Novel code design approaches are first studied for the two-user Gaussian multiple access channel. Exploiting Gaussian mixture approximation, new methods are proposed wherein the optimized codes are shown to improve upon the available designs and off-the-shelf point-to-point codes applied to the multiple access channel scenario. The code design is then examined for the two-user Gaussian interference channel implementing the Han-Kobayashi encoding and decoding strategy. Compared with the point-to-point codes, the newly designed codes consistently offer better performance. Parallel to this work, code design is explored for the discrete memoryless interference channels wherein the channel inputs and outputs are taken from a finite alphabet and it is demonstrated that the designed codes are superior to the single user codes used with time sharing. Finally, the code design principles are also investigated for the two-user Gaussian interference channel employing trellis-based codes with short block lengths for the case of strong and mixed interference levels. / Dissertation/Thesis / Doctoral Dissertation Electrical Engineering 2015

Identiferoai:union.ndltd.org:asu.edu/item:35963
Date January 2015
ContributorsSharifi, Shahrouz (Author), Duman, Tolga M (Advisor), Zhang, Junshan (Committee member), Tepedelenlioglu, Cihan (Committee member), Reisslein, Martin (Committee member), Arizona State University (Publisher)
Source SetsArizona State University
LanguageEnglish
Detected LanguageEnglish
TypeDoctoral Dissertation
Format163 pages
Rightshttp://rightsstatements.org/vocab/InC/1.0/, All Rights Reserved

Page generated in 0.002 seconds