Return to search

Hydrodynamics in the Calibration of Optical Tweezers for Coiled-Coil Studies

Coiled-coil motifs are part of 5–10 % of the eukaryotic proteome and are involved in important cellular processes such as membrane trafficking, chromosome segregation or mechanosensing. Their canonical form is well understood and based on a heptad repeat with hydrophobic amino acids at positions 1 and 4. A sequence of these peptides folds into an α-helix and two, or more, of these helices bind together by winding around each other, covering up the hydrophobic residues and giving rise to the coiled-coil structure. Coiled-coil proteins appearing in nature do, however, deviate from this form by introducing discontinuities into the heptad repeat. The effect of these imperfections on the structure is only known for few cases and not generally understood or predictable. The additional impact of these discontinuities on the dynamic function of coiled-coil domains is unknown altogether. Here, in order to tackle these questions, the adhesive forces between the α-helices are studied in single-molecule experiments.

To measure these small forces (∼ pN) with a high spatial and temporal resolution, a dual-trap optical tweezers setup was constructed. Special emphasis was put on realizing the required high resolution, a large degree of automation and versatility during the building process. The instrument’s performance was assessed by recording force-extension curves of DNA yielding results for the molecular parameters persistence length and stretch modulus in good agreement with those found in the literature. Additionally, the Allan deviation was computed for different configurations of beads and a high stability and resolution of the instrument was found with optimal performance on the time scale of 1–10 s.

Optical tweezers require calibration to accurately measure forces. To this end, generally a scheme is used that leverages the Brownian motion of a trapped object in the harmonic potential, created by the laser focus, to determine the parameters required to convert the analog voltage signal to distances and forces. However, this approach requires prior knowledge of the bead’s drag coefficient. A method was suggested previously that allows to measure this parameter by exciting the trapped bead through an external fluid flow and observing its response. Yet, this scheme was proposed for single-trap devices only. The precision and versatility of the new instrument was increased by extending this technique to work with two traps and implementing it in the apparatus. To this aim, the underlying equations of a trapped bead’s motion were modified to include hydrodynamic interactions between the objects resulting from the external fluid flow. It was found that a single multiplicative factor is sufficient to correct the calibration results for the hydrodynamic effects and ensure precise calibration. The drag coefficient of several beads yielded the same result for a single and two traps within the measurement error thus confirming the validity of the method.

The newly built instrument was then used to study the coiled-coil protein early endosome antigen 1 (EEA1). This 200 nm long homodimer was shown to undergo an entropic collapse upon binding a small GTPase at the N-terminus. For further investigations of this effect and the adhesives forces at play, an experiment was designed here to unzip the two α-helices of the protein. To this end, DNA handles were attached to each of the two helices using a sortase A based ligation reaction as force moderators and first optical tweezers experiments were performed with the protein-DNA chimera. Thus, the necessary tools for unzipping assays of EEA1 are now at hand to further research the entropic collapse process.

To summarize, a dual-trap optical tweezers setup was built, the calibration routine extended and realized in a more precise way and the instrument was used to investigate binding energies of EEA1 α-helices. / Coiled-Coil Strukturmotive sind in 5–10 % aller Proteine von Eukaryoten vertreten und wichtiger Teil zellulärer Prozesse wie Membrantransport, Segregation von Chromosomen oder Mechanoperzeption. Ihre grundlegende Struktur besteht aus dem sogenannten Heptadenmuster, einer Sequenz aus sieben Aminosäuren mit hydrophoben Molekülen an Position eins und vier. Eine Reihe dieser Muster kann sich zu einer α-Helix falten und zwei, oder mehr, solcher Helices sich umeinander winden, um die hydrophoben Moleküle abzuschirmen. Das Ergebnis ist eine Coiled-Coil- oder Doppelwendelstruktur. Natürlich vorkommende Coiled-Coil Proteine weichen jedoch durch Fehlstellen im Heptadenmuster von dieser kanonischen Form ab. Die Auswirkung dieser Störstellen auf die Struktur des gesamten Moleküls ist bisher nur für einige wenige Fälle untersucht und nicht allgemein vorstanden oder vorhersagbar. Der zusätzliche Einfluss dieser Fehlstellen auf die Funktion und dynamischen Prozesse solcher Proteine ist gänzlich unbekannt. Um diesen Fragen nachzugehen werden hier die Bindungskräfte zwischen den α-Helices in Einzelmolekülstudien untersucht.

Um diese winzigen Kräfte (∼ pN) mit hoher räumlicher und zeitlicher Auflösung untersuchen zu können, wurde im Rahmen der vorliegenden Arbeit eine optische Doppelfalle konstruiert. Besonderes Augenmerk lag dabei auf dem Erreichen der erforderlichen Auflösung, einem hohen Grad an Automatisierung und der vielfälting Einsatzfähigkeit des Instruments. Die Leistungsfähigkeit dieses Kraftmikroskops wurde besonders durch zwei Experimente überprüft und sichergestellt. Zum einen wurden DNA Moleküle gedehnt und die Polymerparameter Persistenzlänge und Zugmodul gemessen, welche sehr gut mit veröffentlichten Referenzwerten übereinstimmten. Zum anderen wurde die Allan Schwankung für verschiedene experimentelle Konfigurationen von mikroskopischen Kugeln ermittelt, was eine hohe Stabilität und Auflösung des Gerätes, mit optimaler Leistung bei Mittelung auf Zeitskalen von 1–10 s, bestätigte.

Optische Fallen müssen kalibriert werden, um Kräfte exakt messen zu können. Im Allgemeinen kommt dafür ein Verfahren zum Einsatz, welches die brownsche Bewegung eines gefangenen Objektes im harmonischen Potential des Laserfokus ausnutzt. Aus diesen Fluktuationen werden die benötigten Parameter ermittelt, um das gemessene analoge Spannungssignal in Abstände und Kräfte umzuwandeln. Dieser Ansatz erfordert jedoch die Kenntnis des Reibungskoeffizienten des gehaltenen Objektes, meist einer mikroskopischen Kugel. Daher wurde eine Methode vorgeschlagen, die durch ein oszillierendes Flussfeld eine zusätzliche Bewegung der Kugel anregt aus welcher der Reibungskoeffizient bestimmt werden kann. Dieses Vorgehen reduziert die im vornherein benötigten Informationen, wurde jedoch nur für eine einzelne optische Falle entwickelt. Der Ansatz wurde in dieser Arbeit erweitert, indem die zu zugrundeliegenden Bewegungsgleichungen einer gefangenen Kugel um hydrodynamische Wechselwirkungen zwischen mehreren Objekten ergänzt und die Kalibrationparameter basierend darauf hergeleitet wurden. Im Ergebnis konnte gezeigt werden, dass ein einzelner multiplikativer Faktor ausreicht, um die Hydrodynamik zu berücksichtigen und die exakte Kalibration des Instruments sicherzustellen. Dieses Vorgehen wurde überprüft, indem der Reibungskoeffizient einer einzelnen oder mehrerer mikroskopischer Kugeln gleichzeitig durch Anlegen eines externen Flussfeldes gemessen wurde. Die Ergebnisse stimmen im Rahmen der Messgenauigkeit überein und bestätigen damit den gewählten Ansatz.

Das neu implementierte Kraftmikroskop wurde im Folgenden eingesetzt, um das Coiled-Coil Protein Early Endosome Antigen 1 (EEA1) zu erforschen. Dieser 200 nm lange Homodimer kollabiert aufgrund entropischer Kräfte sobald eine kleine GTPase an seinen N-Terminus bindet. Um diesen Effekt und die wirkenden Bindungskräfte besser zu verstehen, wurde hier ein Experiment entwickelt bei dem die beiden α-Helicen auseinandergezogen werden. Dazu wurde mittels einer Sortase A basierten Ligationsreaktion an jede Helix ein DNA-Stück gebunden, über welches Kräfte auf das Molekül übertragen werden können. Erste Experimente wurden mit der optischen Doppelfalle und dieser Protein-DNA Chimäre durchgeführt. Somit sind alle benötigten Werkzeuge zum weiteren Studium des entropischen Kollapses von EEA1 verfügbar, indem die Bindungskräfte der α-Helicen untersucht werden.

Zusammenfassend wurde eine hoch auflösende Doppelfalle konstruiert, die Kalibrationsmethode weiterentwickelt und verfeinert und das Kraftmikroskop zur Erforschung der Bindungskräfte der α-Helicen von EEA1 eingesetzt.

Identiferoai:union.ndltd.org:DRESDEN/oai:qucosa:de:qucosa:36098
Date13 November 2019
CreatorsEhrlich, Christoph
ContributorsGrill, Stephan, Schlierf, Michael, Technische Universität Dresden
Source SetsHochschulschriftenserver (HSSS) der SLUB Dresden
LanguageEnglish
Detected LanguageGerman
Typedoc-type:doctoralThesis, info:eu-repo/semantics/doctoralThesis, doc-type:Text
Rightsinfo:eu-repo/semantics/openAccess

Page generated in 0.0025 seconds