Return to search

Modélisation du couplage thermique entre la combustion et l'encrassement des tubes d'un four de raffinerie / Modeling of the thermal coupling between combustion and fouling inside furnace pipes of a refinery

Dans les fours de raffinerie, l'efficacité du transfert énergétique vers le pétrole brut avant sa distillation est altérée par la formation d'un composé carboné dans les tubes, appelé coke. Cela conduit à l'augmentation des coûts de production et de maintenance, et exige une compréhension accrue ainsi qu'un meilleur contrôle de ce phénomène. Cet encrassement est de type chimique et induit par les fortes températures. Dans les fours de cette dimension, le transfert de chaleur s'effectue principalement par rayonnement des produits de combustion. Le flux radiatif net sur les surfaces d'échange des tubes dépend de la température de toutes les surfaces solides et a donc besoin d'être prédit avec une précision suffisante. La température sur les tubes est le résultat d'un équilibre entre le rayonnement thermique et la conduction. Le comportement thermique de l'ensemble du système est un problème de couplage entre le rayonnement et la conduction. Une méthodologie complète de couplage est exposée et validée de la manière suivante. Dans ce problème, la flamme est décrite par un modèle analytique axisymétrique avec chimie complexe. Le couplage avec la conduction dans les tubes est réalisé par l'utilisation d'une méthode aux ordonnées discrètes (DOM) avec un modèle spectral de type bandes étroites pour le rayonnement des gaz de combustion. Un bilan énergétique confirme que les transferts de chaleur sont dominés par le rayonnement thermique. Un bon accord avec les mesures disponibles sur un four réel montre que l'approche proposée est capable de prédire le rayonnement thermique. L'étape suivante consiste à coupler le calcul de la température du tube à une loi d'encrassement. Un modèle chimique simple est utilisé. Il est validé à l'aide d'une expérience de laboratoire. La comparaison entre les températures obtenues avec la simulation et celles mesurées par des sondes thermiques montre que la simulation est capable de capturer l'évolution de la température dans le tube avec précision. Enfin, un modèle d'encrassement pour la configuration réelle est trouvé puis appliqué dans une simulation couplée complète. Cette simulation montre un bon accord entre l'évolution de la température sur site et dans la simulation. Une analyse plus poussée est réalisée sur les profils de température, de flux radiatif et de dépôt de coke et montre l'impact de ce dépôt sur l'installation / In industrial refinery furnaces, the efficiency of the thermal transfer to heat crude oil before distillation is often altered by coke deposition inside the process pipes. This leads to increased production and maintenance costs, and requires better understanding and control. Crude oil fouling is a chemical reaction that is, at first order, thermally controlled. In such large furnaces, the predominant heat transfer process is thermal radiation by the hot combustion products, which directly heats the pipes. As radiation fluxes depend on temperature differences, the pipe surface temperature also plays an important role and needs to be predicted with sufficient accuracy. This temperature results from the energy balance between thermal radiation and conduction in the solid material of the pipe, meaning that the thermal behavior of the whole system is a coupled radiation-conduction problem. In this work, this problem is solved in a cylindrical furnace, using the Discrete Ordinate Method (DOM) with accurate spectral models for the radiation of combustion gases, described by a complex chemistry flame model, and coupled to heat conduction in the pipe to predict its wall temperature. An energy balance confirms that heat transfers are effectively dominated by thermal radiation. Good agreement with available measurements on a real furnace shows that the proposed approach is able to predict the heat transfer to the pipe. The method gives an accurate prediction of the radiative source term and temperature fields in the furnace and on the pipe surface, which are key parameters for liquid fouling inside the pipe. Although reasonably accurate results are obtained with simple models, they still can be easily improved by more sophisticated models for turbulence, combustion and radiation. The next step is to couple the calculation of the pipe temperature to a fouling law. Since exact composition of crude oil is not available, one needs to model coke deposition with simple fouling law. The idea is to model the deposition rate by a thermal resistance added to the heated pipe and allows to coupling the calculation of the pipe temperature to a fouling law. A simple chemical model is used, and validated against a labscale experiment, prior to apply it to a furnace configuration. Comparing the temperature obtained with the simulation to the temperature measured by thermal probes at selected locations shows that the simulation is able to capture the temperature variation at these points. It is shown that coking occurs when the temperature has remained high on both sides of the pipe for a sufficient length. We explain how to extract a fouling law in controlled condition when the deposit is induced by thermal stressing of the crude. Finally, the whole system, including radiation,conduction and deposition, is coupled. Results are compared to the real furnace and show relatively good agreement in terms of external skin pipe temperature prediction. This observation validates the methodology exposed in this script

Identiferoai:union.ndltd.org:theses.fr/2012INPT0095
Date16 February 2012
CreatorsPedot, Thomas
ContributorsToulouse, INPT, Cuenot, Bénédicte, Riber, Eleonore
Source SetsDépôt national des thèses électroniques françaises
LanguageFrench
Detected LanguageEnglish
TypeElectronic Thesis or Dissertation, Text

Page generated in 0.003 seconds