A polyconvex continuum-level proteoglycan Cauchy stress function was developed based on the continuum electromechanical Poisson-Boltzmann unit cell model for proteoglycan interactions. The resulting proteoglycan model was combined with a novel collagen fibril model and a ground substance matrix material to create a polyconvex constitutive finite element model of articular cartilage. The true collagen fibril modulus , and the ground substance matrix shear modulus , were varied to obtain the best fit to experimental tension, confined compression, and unconfined compression data for native explants and explants cultured in insulin-like growth factor-1 (IGF-1) and transforming growth factor-β1 (TGF-β1). Results indicate that culture in IGF-1 results in a weakening of the COL fibers compared to native explants, and culture in TGF-β1 results in a strengthening of the COL fibers compared to native explants. These results elucidate the biomechanical changes in collagen fibril modulus, and ground matrix shear modulus following in vitro culture with IGF-1 and TGF-β1. Understanding the constitutive effects of growth factor stimulated culture may have applications in AC repair and tissue engineering.
Identifer | oai:union.ndltd.org:CALPOLY/oai:digitalcommons.calpoly.edu:theses-1489 |
Date | 01 March 2011 |
Creators | Stender, Michael |
Publisher | DigitalCommons@CalPoly |
Source Sets | California Polytechnic State University |
Detected Language | English |
Type | text |
Format | application/pdf |
Source | Master's Theses |
Page generated in 0.0021 seconds