Return to search

Application of Collagen Matrices for Enhancing Cardiac Regeneration

Injectable biomaterials have emerged as a treatment for myocardial infarction (MI). They can be applied either as an enhancement for cell therapy or as a stand-alone treatment for MI. The main focus of this study was to apply circulating angiogenic cells (CACs) with or without an injectable collagen matrix for MI treatment in a mouse model. Furthermore, a collagen-chitosan matrix was tested for modulating the myocardial maladaptive remodeling post-MI. First, the in vivo thermo-gelling and retention properties of the collagen matrix were validated using positron emission tomography (PET) tracer and quantum dot (Qdot) labelled matrix in MI mouse hearts. The therapeutic potential of the matrix ± CACs was then tested in a mouse MI model. The results showed that CACs-only and matrix-only treatments were associated with cardiac function preservation. However, in combination, CAC + matrix therapy had a synergistic effect and significantly improved cardiac function (echocardiography), perfusion and viability (PET scan), increased cell engraftment and arteriole density, and reduced the infarct size. CAC-matrix interaction through the integrin alpha2 receptor was essential for the observed therapeutic effect. In a third study, the addition of chitosan (a polysaccharide) to the collagen matrix was shown to reduce maladaptive remodeling post-MI by limiting cardiac fibroblast-to-myofibroblast differentiation and scar formation. In conclusion, these collagen-based hydrogels hold promise to enhance cardiac repair as a delivery scaffold for therapeutic cells, and/or as a stand-alone treatment, which can actively modulate the environment including the fibrotic process after MI.

Identiferoai:union.ndltd.org:uottawa.ca/oai:ruor.uottawa.ca:10393/31342
Date January 2014
CreatorsAhmadi, Ali
ContributorsSuuronen, Erik, Ruel, Marc
PublisherUniversité d'Ottawa / University of Ottawa
Source SetsUniversité d’Ottawa
LanguageEnglish
Detected LanguageEnglish
TypeThesis

Page generated in 0.002 seconds