Return to search

Effects of blade configuration on flow distribution and power output of a zephyr vertical axis wind turbine.

Worldwide interest in renewable energy systems has increased dramatically, due to environmental concerns like climate change and other factors. Wind power is a major source of sustainable energy, and can be harvested using both horizontal and vertical axis wind turbines. This thesis presents studies of a vertical axis wind turbine performance for applications in urban areas. Numerical simulations with FLUENT software are presented to predict the fluid flow through a novel Zephyr vertical axis wind turbine(VAWT). Simulations of air flow through the turbine rotor were performed to analyze the performance characteristics of the device. Major blade geometries were examined. A multiple reference frame (MRF) model capability of FLUENT was used to express the dimensionless form of power output of the wind turbine as a function of the wind freestream velocity and the rotor's rotational speed. The simulation results exhibit close agreement with a stream-tube momentum model. / UOIT

  1. http://hdl.handle.net/10155/11
Identiferoai:union.ndltd.org:LACETR/oai:collectionscanada.gc.ca:OOSHDU.10155/11
Date01 July 2008
CreatorsAjedegba, John Oviemuno
ContributorsNaterer, Greg F., Rosen, Marc
Source SetsLibrary and Archives Canada ETDs Repository / Centre d'archives des thèses électroniques de Bibliothèque et Archives Canada
LanguageEnglish
Detected LanguageEnglish
TypeThesis

Page generated in 0.0022 seconds