The aim of this thesis work was to systematically investigate the physico-chemical properties of polyelectrolyte complexes (PECs) formed by bottle brush and linear polyelectrolytes in solution and at solid / liquid interfaces. Electrostatic self-assembly of oppositely charged macromolecules in aqueous solution is a versatile strategy to construction of functional nanostructures with easily controlled properties. Bottle brush architecture, introduced into the PEC, generates a number of distinctive properties of the complexes, related to a broad range of application, such as colloidal stability and protein repellency to name a few. To utilize these materials in a wide range of applications e.g. drug delivery, the understanding of the effects of polymer architecture and solution parameters on the properties of bottle brush PECs is of paramount importance. This thesis constitutes a systematic investigation of PECs formed by a series of cationic bottle-brush polyelectrolytes and a series of anionic linear polyelectrolytes in aqueous solution. The focus of the first part of the thesis was primarily on formation and characterization of PECs in solution, whereas the adsorption properties and adsorption kinetics of bottle-brush polyelectrolytes and their complexes was investigated in the second part of the thesis work. In particular, effects of the side-chain density of the bottlebrush polyelectrolyte, concentration, mixing ratio and molecular weigh of the linearpolyelectrolyte on formation, solution properties, stability and adsorption of PECs were addressed. The pronounced effect of the side-chain density of the bottle-brush polyelectrolyte on the properties of stoichiometric and nonstoichiometric PECs was demonstrated. Formation of PECs by bottle-brush copolymers with high density of side-chains results in small, watersoluble, molecular complexes having nonspherical shape, independent of concentration. Whereas formation of PEC-aggregates was revealed by bottle-brush polyelectrolytes with low side chain density, the level of aggregation in these complexes is controlled by polyelectrolyte concentration. The structure of the PECs formed with low molecular weight polyanions is consistent with the picture that several small linear polyelectrolyte molecules associate with the large bottle-brush. In contrast, when complexation occurs between polyanions of high molecular weigh and the bottle-brush polymers considerably larger PECs are formed, consistent with several bottle-brush polymers associating with one high molecular weight polyanion. / QC 20110516
Identifer | oai:union.ndltd.org:UPSALLA1/oai:DiVA.org:kth-33666 |
Date | January 2011 |
Creators | Alexander, Shovsky |
Publisher | KTH, Yt- och korrosionsvetenskap, Stockholm : KTH-Royal Institute of Technology |
Source Sets | DiVA Archive at Upsalla University |
Language | English |
Detected Language | English |
Type | Doctoral thesis, comprehensive summary, info:eu-repo/semantics/doctoralThesis, text |
Format | application/pdf |
Rights | info:eu-repo/semantics/openAccess |
Relation | Trita-CHE-Report, 1654-1081 ; 2011:37 |
Page generated in 0.0024 seconds