The inherent thermal resistance of ceramic membranes allows for treatment of industrial waters at elevated temperatures. Traditionally, the high temperature of wastewater has been an issue compromising the integrity of polymeric membrane systems or requiring the temperature to be lowered for further treatments. In ceramic membrane systems, a decrease in viscosity with increasing temperature, however, can be utilized, which increases the permeate flux. In this study, the fouling of ceramic ultrafiltration by feed solutions containing colloidal silica was evaluated at temperatures between 25 – 90 °C seen in various industries. Ceramic membranes were able to perform well at elevated temperatures up to 90 ºC with sustained mechanical and chemical integrity. Results showed net benefit of filtration at elevated temperatures on permeate flux in spite of increasing total fouling resistance with temperature. When the temperature increased from 25 to 90 °C, there was a 90% increase in steady-state permeate flux. The dominant resistance was physically removable fouling, and the increase in fouling with feed temperature was supported by force balance analyses. This study provides a foundation from which further studies can be developed including pilot-scale testing, use of real wastewater, and the effects of operating conditions.
Identifer | oai:union.ndltd.org:GATECH/oai:smartech.gatech.edu:1853/51778 |
Date | 22 May 2014 |
Creators | Cromey, Tyler |
Contributors | Kim, Jaehong |
Publisher | Georgia Institute of Technology |
Source Sets | Georgia Tech Electronic Thesis and Dissertation Archive |
Detected Language | English |
Type | Thesis |
Format | application/pdf |
Page generated in 0.0024 seconds