Return to search

Digital Image Analysis of Cells : Applications in 2D, 3D and Time

Light microscopes are essential research tools in biology and medicine. Cell and tissue staining methods have improved immensely over the years and microscopes are now equipped with digital image acquisition capabilities. The image data produced require development of specialized analysis methods. This thesis presents digital image analysis methods for cell image data in 2D, 3D and time sequences. Stem cells have the capability to differentiate into specific cell types. The mechanism behind differentiation can be studied by tracking cells over time. This thesis presents a combined segmentation and tracking algorithm for time sequence images of neural stem cells.The method handles splitting and merging of cells and the results are similar to those achieved by manual tracking. Methods for detecting and localizing signals from fluorescence stained biomolecules are essential when studying how they function and interact. A study of Smad proteins, that serve as transcription factors by forming complexes and enter the cell nucleus, is included in the thesis. Confocal microscopy images of cell nuclei are delineated using gradient information, and Smad complexes are localized using a novel method for 3D signal detection. Thus, the localization of Smad complexes in relation to the nuclear membrane can be analyzed. A detailed comparison between the proposed and previous methods for detection of point-source signals is presented, showing that the proposed method has better resolving power and is more robust to noise. In this thesis, it is also shown how cell confluence can be measured by classification of wavelet based texture features. Monitoring cell confluence is valuable for optimization of cell culture parameters and cell harvest. The results obtained agree with visual observations and provide an efficient approach to monitor cell confluence and detect necrosis. Quantitative measurements on cells are important in both cytology and histology. The color provided by Pap (Papanicolaou) staining increases the available image information. The thesis explores different color spaces of Pap smear images from thyroid nodules, with the aim of finding the representation that maximizes detection of malignancies using color information in addition to quantitative morphological parameters. The presented methods provide useful tools for cell image analysis, but they can of course also be used for other image analysis applications.

Identiferoai:union.ndltd.org:UPSALLA1/oai:DiVA.org:uu-9541
Date January 2009
CreatorsPinidiyaarachchi, Amalka
PublisherUppsala universitet, Centrum för bildanalys, Uppsala : Universitetsbiblioteket
Source SetsDiVA Archive at Upsalla University
LanguageEnglish
Detected LanguageEnglish
TypeDoctoral thesis, comprehensive summary, info:eu-repo/semantics/doctoralThesis, text
Formatapplication/pdf
Rightsinfo:eu-repo/semantics/openAccess
RelationDigital Comprehensive Summaries of Uppsala Dissertations from the Faculty of Science and Technology, 1651-6214 ; 596

Page generated in 0.0083 seconds