Return to search

Gold Nanoparticle-Based Colorimetric Sensors for Detection of DNA and Small Molecules

Biosensors have proven to be a powerful tool for detecting diverse targets, such as proteins, DNA, and small molecules representing disease biomarkers, toxins, drugs and their metabolites, environmental pollutants, agrichemicals, and antibiotics with high sensitivity and specificity.
The major objective of the research described in this dissertation was to develop low cost, low sample volume, highly sensitive and specific AuNP-based colorimetric sensor platforms for the detection of DNA and small molecules. With this in mind, we propose an instrument-free approach in chapter three for the detection of NADH with a sensor constructed on a paper substrate, based on the target-induced inhibition of AuNP dissolution. The successful detection of this important molecule opens the door to numerous possibilities for dehydrogenase characterization, because NAD+/NADH are essential cofactors for more than 300 dehydrogenase enzymes. To further increase the sensitivity of our hybridization-based assay for DNA detection, we developed an enzyme-assisted target recycling (EATR) strategy in chapter four and have applied such an EATR-based colorimetric assay to detect single-nucleotide mismatches in a target DNA with DNA-functionalized AuNPs. This assay is based on the principle that nuclease enzymes recognize probe–target complexes, cleaving only the probe strand. This results in target release, enabling subsequent binding to and cleavage of another probe molecule. When the probe is conjugated onto AuNPs, complete cleavage from the AuNP surface produces a detectable signal in high ionic strength environments as the nanoparticles undergo aggregation. With such enzyme-assisted amplification, target detection can occur with a very low nM detection limit within 15 minutes. The extent of DNA loading on the AuNP surface plays an important role in the efficiency of DNA hybridization and aptamer-target assembly. Many studies have shown that high surface-coverage is associated with steric hindrance, electrostatic repulsive interactions and elevated surface salt concentration, whereas low surface-coverage can result in nonspecific binding of oligonucleotides to the particle surface. In chapter five, we investigated DNA surface coverage effects, and apply this optimization in conjunction with a highly-specific aptamer to develop a sensitive colorimetric sensor for rapid cocaine detection based on the inhibition of nuclease enzyme activity.

Identiferoai:union.ndltd.org:fiu.edu/oai:digitalcommons.fiu.edu:etd-3762
Date29 June 2016
CreatorsLiang, Pingping
PublisherFIU Digital Commons
Source SetsFlorida International University
Detected LanguageEnglish
Typetext
Formatapplication/pdf
SourceFIU Electronic Theses and Dissertations

Page generated in 0.0018 seconds