Les polyominos sont souvent représentés par des mots de quatre lettres ou des mots de changements de direction décrivant leur contour. La combinatoire des mots classique y joue donc un rôle descriptif important, particulièrement dans le choix d'un représentant canonique. Les mots de Lyndon fournissent, de façon naturelle, un tel représentant. Une approche systématique pour le calcul de propriétés des polyominos, basée sur une version originale d'une discrétisation du théorème de Green classique en calcul bivarié, est élaborée. Ceci nous a naturellement amené à analyser les propriétés géométriques d'ensembles du réseau discret de rondeur maximale. Pour une taille donnée, ces ensembles minimisent le moment d'inertie par rapport à un axe passant par leur centre de gravité. Nous introduisons la notion de quasi-disque et montrons entre autres que ces ensembles minimaux sont des poIyominos
fortement-convexes. Nous développons également un algorithme permettant de les engendrer systématiquement. Un autre aspect concerne des propriétés sur les contours d'ensembles discrets donnant lieu à une nouvelle démonstration d'un résultat de Daurat et Nivat sur les points dits saillants et rentrants d'un polyomino. Nous présentons également une généralisation de ce résultat aux réseaux hexagonaux et montrons que le résultat est faux pour les autres réseaux semi-réguliers. Nous poursuivons par l'introduction d'opérations de mélange spéciaux sur des mots décrivant des chemins discrets selon la suite de leurs changements de direction. Ces opérations de mélange permettent d'engendrer des courbes fractales du type courbe de dragon et d'analyser
certains de leurs invariants. Finalement, une généralisation aux dimensions supérieures des algorithmes précédents basés sur le théorème de Green discret, est présentée. Plus particulièrement, nous développons une version discrète du théorème de Stokes basée sur des familles de poids sur les hypercubes de dimension k dans l'espace discret Zn, k ≤ n. Quelques applications sont également décrites. ______________________________________________________________________________ MOTS-CLÉS DE L’AUTEUR : Géométrie discrète, Combinatoire des mots, Ensembles discrets, Polyominos, Quasi-disques, Chemins polygonaux, Courbes de dragon, Théorème de Green discret, Théorème de Stokes discret, Algorithmes.
Identifer | oai:union.ndltd.org:LACETR/oai:collectionscanada.gc.ca:QMUQ.1463 |
Date | January 2008 |
Creators | Lacasse, Annie |
Source Sets | Library and Archives Canada ETDs Repository / Centre d'archives des thèses électroniques de Bibliothèque et Archives Canada |
Detected Language | French |
Type | Thèse acceptée, PeerReviewed |
Format | application/pdf |
Relation | http://www.archipel.uqam.ca/1463/ |
Page generated in 0.002 seconds