The negative impact of gas turbine emissions on the environment and human health is a growing concern. Recent studies suggest injecting water into the combustion process effectively reduces emissions and increases power output. However, this approach presents new challenges that need to be thoroughly investigated. Siemens Energy (SE) has recently conducted a study on water injection and its effects on gaseous combustion mixtures but encountere challenges the simulation results when adding water. Therefore, the primary objective of this thesis is to evaluate the methodologies available in Star CCM+ for modeling water injection in a simplified combustor model (SCM) using both liquid (diesel) and gas (methane) fuels. In addition, the behavior of the flame, temperature field inside the combustor, and burner outlet temperature, are investigated.The study has compared physical phenomena such as, the flame shape, velocity, and vorticity field of SCMs with the complete combustor model of the SGT-800 gas turbine for gas fuel. Additionally, the thesis has examined the capability of STAR CCM+ for predicting flame temperature at the outlet against in-house calculation data and Cantera software for parametric cases. The methodology involves a parametric study using the Realizable k-ε TwoLayer turbulence model for steady-state RANS simulations. Combustion is modeled using the FGM method, while Lagrangian multiphase approach is used for liquid injection.The employed FGM combustion model, Lagrangian multiphase model, and RANS simulations yielded realistic results. In addition, the convergence of gas fuel cases was smoother compared to liquid fuel cases, which involved multiphase modelling and evaporation, makes it more complex. The physical phenomena were captured by CFD simulations for the SCM. Flame shape, velocity and vorticity field have good agreement with the theory in the field of gas turbine combustion and other literature sources. Disagreements between CFD and in-house calculations were observed, with the greatest differences being 24 ℃ for premixed methane (at WFR (Water Fuel Ratio) of 0) and 28 ℃ for non-premixed diesel (at WFR of 1). On the other hand, Cantera results for Vapor and for methane cases with water addition were in limit of 10 ℃ with CFD results for WFR between 0-0.5. Nevertheless, achieving a simulation accuracy within a 10 ℃ limit proved challenging due to limitations and potential sources of error in the in-house calculation sheet, combustion modelling, RANS simulations, and reaction mechanism.
Identifer | oai:union.ndltd.org:UPSALLA1/oai:DiVA.org:liu-197392 |
Date | January 2023 |
Creators | Shinwari, Sanger |
Publisher | Linköpings universitet, Mekanisk värmeteori och strömningslära |
Source Sets | DiVA Archive at Upsalla University |
Language | English |
Detected Language | English |
Type | Student thesis, info:eu-repo/semantics/bachelorThesis, text |
Format | application/pdf |
Rights | info:eu-repo/semantics/openAccess |
Page generated in 0.0029 seconds