Ce mémoire est consacré à la mise en œuvre de commandes d'un train de véhicules intelligents sur autoroute ayant pour objectifs principaux de réduire la congestion et d'améliorer la sécurité routière. Après avoir présenté l'état de l'art sur des systèmes de conduite automatisée, des modèles de la dynamique longitudinale et latérale du véhicule sont présentés. Ensuite, des stratégies de contrôle longitudinal et latéral sont étudiées.D'abord, le contrôle longitudinal est conçu pour être hiérarchique avec un contrôleur de niveau supérieur et un contrôleur de niveau inférieur. Pour celui de niveau supérieur, une régulation d'inter-distance SSP (Safety Spacing Policy) est proposée. Nous avons constaté que la SSP peut assurer la stabilité de la chaîne et la stabilité des flux de trafic et augmenter ainsi la capacité de trafic. Puis, pour celui de niveau inférieur, une loi de commande floue coordonnée est proposée pour gérer l'accélérateur et le freinage. Ensuite, une loi de commande multi-modèle floue est conçue pour le contrôle latéral. De plus, pour réaliser des transformations lisses entre les différentes opérations latérales, une architecture de contrôle hiérarchique est proposée. Puis, l'intégration des commandes longitudinale et latérale est étudiée. Enfin, l'estimation des variables d'états du véhicule est discutée. Un filtre de Kalman-Bucy est conçu pour estimer les états du véhicule. En outre, un prototype de véhicule intelligent à échelle réduite est également présenté. Les performances des divers algorithmes de commande proposés ont été testées par simulations, et les résultats ont été confirmés par les premières expériences en utilisant le prototype
Identifer | oai:union.ndltd.org:CCSD/oai:tel.archives-ouvertes.fr:tel-00586081 |
Date | 02 September 2010 |
Creators | Zhao, Jin |
Publisher | Ecole Centrale de Lille |
Source Sets | CCSD theses-EN-ligne, France |
Language | English |
Detected Language | French |
Type | PhD thesis |
Page generated in 0.0112 seconds