The structure of minimal zero-dimensional extension of rings with Noetherian spectrum in which zero is a primary ideal and with at most one prime ideal of height greater than one is determined. These rings include K[[X,T]] where K is a field and Dedenkind domains, but need not be Noetherian nor integrally closed. We show that for such a ring R there is a one-to-one correspondence between isomorphism classes of minimal zero-dimensional extensions of R and sets M, where the elements of M are ideals of R primary for distinct prime ideals of height greater than zero. A subsidiary result is the classification of minimal zero-dimensional extensions of general ZPI-rings. / by Marcela Chiorescu. / Thesis (Ph.D.)--Florida Atlantic University, 2009. / Includes bibliography. / Electronic reproduction. Boca Raton, Fla., 2009. Mode of access: World Wide Web.
Identifer | oai:union.ndltd.org:fau.edu/oai:fau.digital.flvc.org:fau_3405 |
Contributors | Chiorescu, Marcela, Florida Atlantic University, Charles E. Schmidt College of Science, Department of Mathematical Sciences |
Publisher | Florida Atlantic University |
Source Sets | Florida Atlantic University |
Language | English |
Detected Language | English |
Type | Text, Electronic Thesis or Dissertation |
Format | v, 43 p. : ill., electronic |
Rights | http://rightsstatements.org/vocab/InC/1.0/ |
Page generated in 0.0017 seconds