For any ring R (associative with 1) we associate a space X of prime torsion theories endowed with Golan's SBO-topology. A separated presheaf L(-,M) on X is then constructed for any right R-module M$ sb{ rm R}$, and a sufficient condition on M is given such that L(-,M) is actually a sheaf. The sheaf space rm E { buildrel{ rm p} over longrightarrow} X) etermined by L(-,M) represents M in the following sense: M is isomorphic to the module of continuous global sections of p. These results are applied to the right R-module R$ sb{ rm R}$ and it is seen that semiprime rings satisfy the required condition for L(-,R) to be a sheaf. Among semiprime rings two classes are singled out, fully symmetric semiprime and right noetherian semiprime rings; these two kinds of rings have the desirable property of yielding "nice" stalks for the above sheaf.
Identifer | oai:union.ndltd.org:LACETR/oai:collectionscanada.gc.ca:QMM.70356 |
Date | January 1987 |
Creators | Rumbos, Irma Beatriz |
Publisher | McGill University |
Source Sets | Library and Archives Canada ETDs Repository / Centre d'archives des thèses électroniques de Bibliothèque et Archives Canada |
Language | English |
Detected Language | English |
Type | Electronic Thesis or Dissertation |
Format | application/pdf |
Coverage | Doctor of Philosophy (Department of Mathematics and Statistics.) |
Rights | All items in eScholarship@McGill are protected by copyright with all rights reserved unless otherwise indicated. |
Relation | alephsysno: 000550562, proquestno: AAINN75888, Theses scanned by UMI/ProQuest. |
Page generated in 0.002 seconds