Return to search

Convergência compacta de resolvente e o teorema de Trotter Kato para perturbações singulares / Compact convergence of resolvent and Trotter-Kato\'s Theorem for singular pertubations

Nesta dissertação estudamos uma versão do Teorema de Trotter-Kato que estabelece uma equivalência entre a continuidade, relativamente a um parâmetro, de operadores resolvente e a continuidade dos semigrupos lineares associados. Os operadores ilimitados envolvidos (geradores de semigrupos analíticos) estão definidos em espaços que variam com o parâmetro e isto nos leva a ter que comparar elementos de espaços de Banach diferentes. Este resultado é aplicado a um problema de Neumann em um domínio fino com fronteira altamente oscilante e que se degenera a um intervalo quando o parâmetro varia. Nesta aplicação, utilizamos o método das múltiplas escalas (comum em teoria de homogeneização) para obter formalmente o problema limite (veja [17]) e, em seguida, provamos a convergência compacta dos operadores resolventes utilizando as funções teste oscilantes de Tartar [15], [16] (veja também Cioranescu e Saint Jean Paulin [12]), obtidas através de um problema auxiliar, juntamente com operadores de extensão / In this work we study a version of Trotter-Katos Theorem that establishes an equivalence between the continuity, with respect to a parameter, of the resolvent operators and the continuity of the associated linear semigroups. The unbounded operators involved (generators of analytic semigroups) are defined spaces that vary with the parameter leading us to introduce methods to compare vectors in different Banach spaces. We apply this theorem to an elliptic boundary value problem with Neumann boundary condition in a highly oscillating thin domain that degenerates to a line segment as the parameter varies. In this application we use the multiple scale method (frequently used in the homogenization theory) to obtain, formally, the limiting problem (see [17]) and, in the sequel, we prove the compact convergence of resolvent operators using the oscillating test functions of Tartar [15] (see also [16] and Cioranescu and Saint Jean Paulin [12]) defined with the aid of an auxiliary problem as well as extension operators

Identiferoai:union.ndltd.org:IBICT/oai:teses.usp.br:tde-11042012-155404
Date23 March 2012
CreatorsCesar Augusto Esteves das Neves Cardoso
ContributorsAlexandre Nolasco de Carvalho, Simone Mazzini Bruschi, Francisco Odair Vieira de Paiva
PublisherUniversidade de São Paulo, Matemática, USP, BR
Source SetsIBICT Brazilian ETDs
LanguagePortuguese
Detected LanguageEnglish
Typeinfo:eu-repo/semantics/publishedVersion, info:eu-repo/semantics/masterThesis
Sourcereponame:Biblioteca Digital de Teses e Dissertações da USP, instname:Universidade de São Paulo, instacron:USP
Rightsinfo:eu-repo/semantics/openAccess

Page generated in 0.0016 seconds