Return to search

Mechanisms of Adaptation to Deformylase Inhibitors

Antibiotic resistance is a growing problem on a global scale. Increasing numbers of bacteria resistant toward one or multiple antibiotics could return us to the high mortality rates for infectious diseases of the pre-antibiotic era. The need for development of new classes of antibiotics is great as is increased understanding of the mechanisms underlying the development of antibiotic resistance. We have investigated the emergence of resistance to peptide deformylase inhibitors, a new class of antibiotics that target bacterial protein synthesis. The fitness of resistant mutants as well as their propensity to acquire secondary compensatory mutations was assessed in order to gain some insight into the potential clinical risk of resistance development. Most of this work was done in the bacterium Salmonella typhimurium, due to the availability of excellent genetic tools to study these phenomena. In addition, we have studied the bacterium Staphylococcus aureus as peptide deformylase inhibitors have been shown to have the greatest effect on Gram-positive organisms. In the course of this work we also examined the mechanistic aspects of translation initiation. Using a cell-free in vitro translation system we studied the effects of various components on translation initiation. These results have been combined with results obtained from resistant and compensated bacterial strains in vivo to gain new insights into the mechanisms of translation initiation.

Identiferoai:union.ndltd.org:UPSALLA1/oai:DiVA.org:uu-123242
Date January 2010
CreatorsZorzet, Anna
PublisherUppsala universitet, Institutionen för medicinsk biokemi och mikrobiologi, Uppsala : Acta Universitatis Upsaliensis
Source SetsDiVA Archive at Upsalla University
LanguageEnglish
Detected LanguageEnglish
TypeDoctoral thesis, comprehensive summary, info:eu-repo/semantics/doctoralThesis, text
Formatapplication/pdf
Rightsinfo:eu-repo/semantics/openAccess
RelationDigital Comprehensive Summaries of Uppsala Dissertations from the Faculty of Medicine, 1651-6206 ; 571

Page generated in 0.0029 seconds