The popularity of growers using only postemergence (POST) herbicides for weed management in soybean was enabled by the commercialization of glyphosate-resistant soybean. The efficacy and flexibility provided by this technology diminished the use of soil residual herbicides and arguably, increased soybean yield loss from early-season weed competition. While, the rapid evolution and biogeographical spread of herbicide-resistant weeds, especially glyphosate-resistant biotypes, has renewed interest into the use of soil residual products, herbicide-resistant soybean technologies continue to be developed that may once again entice growers into POST-only weed management systems. The commercial interest in soybean yield advancements justifies further characterizing the benefits provided by early-season weed control beyond those of herbicide-resistance management. Furthermore, as awareness heightens regarding techniques that will enhance the sustainability of agro-ecosystems, specific focus on resource utilization will help to evaluate the viability of this weed management strategy. Field experiments were conducted across four sites throughout southern Illinois in 2012 and 2013 to study the influence of early-season weed management strategies on soybean nutrient accumulation, grain yield parameters, and the acquisition of nutrients by broadleaved and grass weeds. Increasing periods of weed competition duration were established by removing weeds at heights of 10, 20, 30 or 45 cm with glyphosate. A weed-free treatment utilizing a comprehensive soil residual and POST herbicide program was included to implement a weed-free comparison. Two standard herbicide management strategies that simulate common grower practices were also evaluated for comparison: flumioxazin PRE followed by glyphosate POST and two sequential POST glyphosate applications. Averaged across all 11 mineral nutrients analyzed in this experiment, broadleaved weeds accumulated 149 and 108% more nutrients than grasses in 2012 and 2013, respectively. Competition from 20-cm weeds reduced the acquisition of N, P, Ca, Mg, S, Fe, B, Cu, and Zn by soybean in 2012; these nutrients in addition to K and Mn were reduced by the same level of competition in 2013. N and Fe were the nutrients in soybean most notably impacted by weed interference. Reductions in soybean grain yield were the result of competition with 30-cm weeds in 2012, and 10-cm weeds in 2013; while, both standard herbicide regimens yielded less than the weed-free treatment in 2013 only. Additionally in 2013, average soybean seed weight and grain oil content was reduced when weeds were not removed before a height of 10 and 20 cm, respectively. The rate of decomposition and nutrient release was measured for waterhemp and giant foxtail desiccated by glyphosate at heights of 10, 20, 30, and 45 cm in two southern Illinois soybean fields. Weed biomass was grown under greenhouse conditions to ensure homogeneity and litterbag methodology was utilized to track in situ mass and nutrient losses, expressed as a decay constant (k) regressed over time according to the single exponential decay model. The effect of specie and height both had a strong influence on the intrinsic properties of the weed biomass and the associated rate of decay. Concentrations of the recalcitrant cell wall components (cellulose, hemicellulose, and lignin) were generally greatest as weed height (plant age and development) increased and with giant foxtail compared with waterhemp. Ca, Mg, and S concentrations were greater in waterhemp, while N was greater in giant foxtail. N and K concentrations decreased with increasing weed height. After 16 weeks, 10-cm waterhemp and giant foxtail detritus had lost 10 and 12% more mass compared to the 45-cm height. Decomposition rates revealed mass loss was highest for 10-cm waterhemp (kD = 0.022) and lowest for 45-cm giant foxtail (kD = 0.011) and this process was negatively correlated to the overall amount of cell wall constituents (r = -0.73). Nutrient release rates followed a similar trend in that shorter (younger) weeds and waterhemp liberated nutrients more readily. Across all tested plant material, K was the nutrient most rapidly released, whereas, Ca was the most strongly retained nutrient. Although the pressing challenge of managing herbicide-resistant weeds justifies the implementation of early-season weed control tactics, this research suggests there are ancillary benefits that are provided by this strategy. The use of a robust, broad-spectrum soil residual herbicide program in conjunction with timely POST applications provides the foundation for early-season weed management, thereby minimizing non-crop nutrient use and enhancing the nutrient acquisition capacity in soybean. This strategy facilitates more sustainable crop production by requiring fewer supplemental nutritional inputs while also protecting grain yield.
Identifer | oai:union.ndltd.org:siu.edu/oai:opensiuc.lib.siu.edu:theses-2436 |
Date | 01 May 2014 |
Creators | Harre, Nick T. |
Publisher | OpenSIUC |
Source Sets | Southern Illinois University Carbondale |
Detected Language | English |
Type | text |
Format | application/pdf |
Source | Theses |
Page generated in 0.0019 seconds